
Appears in "Parallel Problem Solving from Nature IV", Springer-Verlag LNCS 1141, pp366-375, 1996.

Formal Algorithms + Formal Representations
= Search Strategies

Patrick D. Surrya�b & Nicholas J. Radcliffea�b

fpds,njrg@quadstone.co.uk

aQuadstone Ltd, 16 Chester Street, Edinburgh, EH3 7RA, UK
bDepartment of Mathematics, University of Edinburgh, The Kings Buildings, EH9 3JZ, UK

Abstract. Most evolutionary algorithms use a fixed representation space. This
complicates their application to many problem domains, especially when there
are dependencies between problem variables (e.g. problems naturally defined over
permutations). This paper presents a method for specifying algorithms with re-
spect to abstract representations, making them completely independent of any ac-
tual representation or problem domain. It also defines a procedure for generating
a concrete representation from an explicit characterisation of a problem domain
which captures beliefs about its structure. This allows arbitrary algorithms to be
applied to arbitrary problems yielding well-specified search strategies suitable for
implementation. The process is illustrated by showing how identical algorithms
can be applied to both the TSP and real parameter optimisation to yield familiar
(but superficially very different) concrete search strategies.

1 Introduction

The traditional genetic algorithm (e.g. the Simple Genetic Algorithm of Goldberg, 1989)
is defined over a fixed representation space, namely that of binary strings. A common
perception is that to employ such an algorithm for a new problem, one need only de-
fine a fitness function. (Indeed, standard software packages exist which literally require
only computer code for a fitness function, e.g. GENESIS; Grefenstette, 1984.) For prob-
lems defined explicitly over binary strings (one counting, royal road, etc.) this does not
present any difficulty. For others, such as real-parameter optimisation, some encoding
from the problem variables into binary strings must be formulated, in order that the fit-
ness of binary chromosomes can then be calculated by decoding them. However, such
“shoe-horning” may make much of the structure of the search problem unavailable to
the algorithm in terms of heritable allele patterns (see for example the discussion of
meaningful alphabets in Goldberg, 1990). For problems in which candidate solutions are
more complicated objects (e.g. the travelling sales-rep problem) a direct binary encoding
may be unnatural or even infeasible. A particular case is when the “natural variables” of
the problem are not orthogonal, in that the valid settings of one variable depend on the
value of another (e.g. permutations). Faced with such a situation, practitioners typically
adopt an ad hoc approach, drawing on evolutionary “concepts” to define pragmatic new
move operators perceived as appropriate in the new domain (e.g. operators such as sub-
tour inversion, partially matched crossover and order crossover have been devised for
the TSP; Oliver et al., 1987).

Although the use of a fixed representation space is widespread, it is unsatisfactory
for a number of reasons. Algorithms based on this idea fail to be truly independent of
problem (particularly for problems with naturally non-orthogonal representations). As



such, it is not possible to transfer a given algorithm to an arbitrary problem domain. Be-
cause such algorithms have only limited domains of applicability, it becomes difficult to
make meaningful comparisons between different algorithms. (Attempting to compare,
for instance, “genetic algorithms” and “simulated annealing” is futile until both a prob-
lem domain and set of move operators are specified, to define each algorithm precisely.)
Finally, a fixed representation space makes it much more difficult to incorporate knowl-
edge about the structure of the problem—one is forced to change either the growth func-
tion (the “genotype-phenotype” mapping) or the move operators, making the algorithm
even less problem-independent.

In this paper we discuss a methodology by which these difficulties can be overcome.
We show how (evolutionary) algorithms can be precisely specified independently of any
particular representation or problem domain. We demonstrate that this allows us to in-
stantiate such an algorithm for any appropriate representation of any particular problem
class, and illustrate this with a compelling example.

D

I
S

f

R

I

��

I�

�g�
�C�

C�

g�

S

f

R

I�

Fig. 1. A problem domain D consists of a set of problem instances. Each instance I de-
fines a search space S of candidate solutions, a fitness function f and a set of objective
valuesR. A characterisation � of the domain specifies a set of equivalences among the
solutions for any instance I . These equivalences induce a representation made up of a
representation space C� (of chromosomes) and a growth function g� mapping chromo-
somes to the objects in S. A chromosomex is a string of alleles, each of which indicates
that x satisfies a particular equivalence on S. Algorithms can be completely specified by
their action on the alleles of these generalised chromosomes, making them totally inde-
pendent of the problem domain itself.



In order to fix terminology, a search problem is taken to be the task of solving any
problem instance from a well-specified problem domain, where by solve we mean find-
ing some optimal or near-optimal solution from a set of candidate solutions. A prob-
lem domain is considered here to consist of a set of problem instances, each of which
takes the form of a search space (of candidate solutions) together with some fitness func-
tion defined on that search space, as illustrated in the top part of figure 1. For instance,
“symmetric travelling sales-rep problems” is a problem domain, with a particular set of
n�n����� inter-city distances defining an instance (yielding a search space of �n������
tours and an associated fitness function). A search strategy is then simply a prescription
by which, for any problem instance, we successively sample candidate solutions from
the search space, typically biasing the samples depending on the observed quality (fit-
ness) of previously sampled points. Any such strategy can be viewed as utilising one
or more move operators which produce new candidate solutions from those previously
visited.

Because the objects in the search space can be arbitrary structures (e.g. real-valued
vectors, TSP tours, neural-network topologies, etc.), it is often helpful to define search
algorithms with respect to an abstract representation of the search space, allowing the
transfer of search algorithms between problem domains. In general, a representation con-
sists of a representation space and a growth function. The representation space defines a
set of chromosomes which will be manipulated (by the move operators) during search,
and the growth function defines a mapping between chromosomes and solutions.

The move operators used to construct a search algorithm can now be defined on
the representation space, and the quality of any chromosome can be determined using
the growth function in conjunction with the fitness function. One obvious method to
achieve the goal of problem-independent search is to fix the representation space, and
then to choose an appropriate growth function for each new problem domain. Such a
search algorithm would sample chromosomes from the fixed representation space, us-
ing the growth and fitness functions as a “black-box” to evaluate them. This is essentially
the traditional viewpoint, and indeed is the standard approach in the theory of compu-
tation (in which Turing machines are used to process arbitrary problems by encoding
them as binary strings). There are however strong arguments against this approach. In
the first instance, it may be extremely difficult or impossible to construct an appropri-
ate growth function. Secondly, it is increasingly recognised that effective search is only
possible if search strategies incorporate appropriate domain knowledge (of the structure
of the function being optimised). Recent work on the so-called “No Free Lunch Theo-
rem” (Wolpert & Macready, 1995; Radcliffe & Surry, 1995) has formalised these ideas,
and has shown that true “black-box” optimisation can be at most as efficient as enumer-
ative search, despite the claims of some authors. We argue that by abstracting the def-
inition of a search algorithm away from a fixed representation-space (just as we strove
for independence from a particular problem domain), we can realise the goal of a truly
problem-independent algorithm while at the same time making the rôle played by do-
main knowledge much more explicit.

The formulation presented in section 2 postulates a problem-dependent characteri-
sation � which captures knowledge about a problem domain. This characterisation me-
chanically generates a formal representation (representation space and growth function)
for any instance of the problem, by defining a number of equivalences over the search
space, as shown in the bottom part of figure 1. These equivalences induce subsets of the
search space thought to contain solutions with related performance; possibly as parti-
tions� generated by equivalence relations, or simply as groups of solutions sharing some

� A partitioning of a set is a collection of disjoint subsets (partitions) covering the set.



characteristic. For a given solution, the pattern of its membership in the specified subsets
is used to define its alleles (and possibly genes). Although in some problems the search
space can be partitioned orthogonally (informally, meaning that all combinations of al-
leles represent legal solutions), this is not always the case. For example, in the travel-
ing sales-rep problem, natural representations involve characterising tours by the edges
(links) that they share, and it is clear that an arbitrary collection of edges does not always
represent a valid tour.

In section 3 we show how formal algorithms can be precisely specified—completely
independently of any particular representation—whose effectiveness is a direct function
of the quality of the domain knowledge captured by the allele structure generated by the
characterisation. All of the move operators used in such an algorithm are defined to ma-
nipulate solutions only in terms of their abstracted subset-membership properties (alle-
les). Because many problem domains are naturally characterised using non-orthogonal
representations, the traditional operators are seen not to be fully general (e.g. consider
one-point crossover between permutations). We provide examples of generalisations of
N -point and uniform crossover, and of mutation and hill-climbing operators, and later
show how they reduce to traditional forms in familiar problem domains.

We proceed in section 4 to show how any formal algorithm can be instantiated with
any suitable representation of a problem domain of interest to produce a concrete search
strategy. This is illustrated by defining a simple representation-independentevolutionary
algorithm and instantiating it on the one hand to solve the TSP and on the other to solve
a real-parameter optimisation problem. The resulting search strategies for the two prob-
lems look very different from each other but are both similar to evolutionary algorithms
commonly applied in their respective domains. We thus prove the surprising result that
two apparently quite different algorithms, in two completely different problem domains,
are in fact identical, in a strong mathematical sense.

In section 5 we summarise the implications of this more formal approach. We see
that by separating algorithm and representation, we achieve the goal of truly problem-
independent algorithms. This separation also makes the rôle of domain knowledge in the
search process much more explicit, allowing us to pose more carefully questions such as
“What is a good algorithm given certain properties of the characterisation?” and “What
is a good characterisation of a given problem domain?” Although this formalism might
be argued to contain a certain degree of circularity, it is seen to yield practical benefits.
For instance, we are able to transfer such algorithms between arbitrary problem domains
and to compare different algorithms fairly, independent of a particular problem.

2 Formal Representations

In tackling a domain of search problems, we often prefer to search over a set of structures
(chromosomes) representing the objects in the search space rather than directly over the
objects themselves. Use of such a representation (made up of a representation space and
associated growth function) makes the search algorithm much more generic. A general
method for defining a representation is to classify subsets of solutions according to char-
acteristics which they share.

In his seminal work, Holland (1975) proceeded using exactly this approach. He iden-
tified subsets of a search space of binary strings using schemata—sets of strings that
share particular bit values. His Schema Theorem shows how the observed fitness of any
schema in a population can be used to bound the expected instantiation of the same sche-
ma in the next generation, under the action of fitness-proportionate selection. Several au-
thors then generalised the notion of a schema and have shown that the theorem applies



to arbitrary subsets of the search space, provided that suitable disruption coefficients are
chosen (Radcliffe, 1991a; Vose & Liepins, 1991).

In particular, Radcliffe (1991a, 1991b) has developed the idea of forma analysis, in
which general subsets of the search space are termed formae. Typically, the formae are
defined as the equivalence classes induced by a set of equivalence relations, although this
need not be the case. Any solution can then be identified by specifying the equivalence
class to which it belongs for each of the equivalence relations (provided the set of rela-
tions is sufficiently rich). Loosely speaking, we identify genes with a set of basic equiv-
alence relations and alleles with the corresponding equivalence classes. For instance, in
a search space of faces, “same hair colour” and “same eye colour” might be two basic
equivalence relations, which would induce the formae “red hair”, “brown hair”, “blue
eyes”, etc. Higher order formae are then constructed by intersection, e.g. “brown hair and
blue eyes”. Chromosomes made up of strings of alleles can then be used to represent the
original structures of the search space (faces in our example). These chromosomes make
up the representation space and the objects they encode define the growth function.

In certain cases, the genes are orthogonal, meaning that any combination of allele
values represents a valid solution, but in many cases this is not so (certain alleles are
incompatible). It is also not always easy to define equivalence relations, so we simply
identify particular subsets of the search space that share some characteristic. In such
cases, genes are not defined and a chromosome consists simply of a set of “alleles”. For
instance, in the TSP, we could identify n�n � ���� subsets of the search space, each
containing all tours in which city i is linked to city j. Then a particular tour would be
represented by the set of (undirected) edges it contained. Although here each chromo-
some would have the same number of alleles, this need not be so, and the ideas generalise
easily to variable-length chromosomes (Radcliffe, 1992).

A problem-dependent characterisation procedure is used to generate the required
equivalences for any instance of a given problem (see figure 1), and captures all of the
structure that will be exploited by a search algorithm. The selection of an appropriate
characterisation for a particular problem domain is an open problem. However, several
design principles have been previously proposed (Radcliffe, 1991a). The most impor-
tant of these is that the generated formae should group together solutions of related fit-
ness (Radcliffe & Surry, 1994a), in order to create structure which can be exploited by
the move operators. (It must also be possible to find a member of any given formae in
“reasonable” time without resorting to enumeration, but this is true of most “reasonable”
characterisations.)

Examples of several representations designed for various problem domains are shown
in table 1. These include the traditional binary representation for real parameters, the
“Dedekind” representation� for real parameters introduced in Surry & Radcliffe (1996),
two natural representations for the traveling sales-rep problem (for comparisons of these
and others see Radcliffe & Surry, 1994a), and two representations for subset-selection
problems (used in neural-network topology optimisation), one in which only set mem-
bership is considered to be important and one in which both membership and non-mem-
bership is used (Radcliffe, 1992).

� A Dedekind cut is a partitioning of the rational numbers into two non-empty sets, such that all
the members of one are less than all those of the other. For example, the irrationals are defined

as Dedekind cuts on the rationals (e.g.
p
�
�

�hfx
�
� x

�
� �g� fx

�
� x

�
� �gi).



Representation Basic formae Genes Degeneracy

Orthogonal Redundancy

Binary-coded reals value has ith bit equal to j yes yes none none

Dedekind real parameters value above/below cut at i yes no none huge

TSP: City positions city i in position j yes no ��n low

TSP: Undirected edges contains link ij no no none low

Subset-selection: inclusive includes ith element no yes none none

Subset-selection: incl/excl incl/excl ith element yes yes none none

Table 1. This table summarises the characteristics of several representations for different
problem domains. Basic formae indicates the way in which basic subsets of the search
space are identified, and the existence of genes is noted. Orthogonal representations are
those in which any combination of alleles define a valid solution. Degeneracy occurs
when multiple chromosomes represent the same solution, and redundancy is the amount
of excess information in the chromosome.

3 Formal Algorithms

Traditional evolutionary algorithms are typically defined using a set of move operators
which assume a particular form of the representation space. For example, many genetic
algorithms assume chromosomes are binary strings, and most evolution strategies as-
sume chromosomes are strings of real parameter values. Although some of the operators
used by such algorithms can be generalised straightforwardly to related representation
spaces (for example N -point crossover between binary strings is easily generalised to
k-ary chromosomes), they typically are not general enough to handle arbitrary represen-
tations. In particular, variable-length genomes and non-orthogonal representations both
present difficulties, and have generally led in the past to ad hoc construction of problem-
specific move operators (for example in the traveling sales-rep problem).

We seek to define formal algorithms using move operators which manipulate the sub-
set membership properties of chromosomes, as generated by any representation. Such
algorithms are completely independent of representation, and can be applied to any prob-
lem domain by instantiating them with a representation appropriate to that domain.

A number of design principles have been proposed to facilitate the development of
simple structure-preserving move operators. This has led to the definition of a number of
representation-independent recombination and mutation operators, permitting the con-
struction of truly representation-independent algorithms. These design principles (Rad-
cliffe, 1991a; 1994) and associated operators include:

1. Respect. Respect requires that children produced by recombination are members of
all formae to which both their parents belong. For example, if our representation
included equivalence relations about hair colour and eye colour, then if both parents
had red hair and green eyes, so should all of the children produced by a respectful
crossover operator.



R�: Random respectful recombination is defined as that operator which selects a
child uniformly at random from the set of all solutions which share all character-
istics possessed by both parents (their similarity set).

2. Transmission. A recombination operator is said to be strictly transmitting if every
child it produces is equivalent to one of its parents under each of the basic equiv-
alence relations (loosely, every gene is set to an allele which is taken from one or
other parent). Thus, if one parent had red hair and the other had brown hair, then
transmission would require that the child had either red or brown hair.
RTR: The random transmitting recombination operator is defined as that operator
which selects a child uniformly at random from the set of all solutions belonging
only to basic formae present in either of the parents (their dynastic potential).

3. Assortment. Assortment requires that a recombination operator be capable of gener-
ating a child with any compatible characteristics taken from the two parents. In our
example above, if one parent had green eyes and the other had red hair, and if those
two characteristics are compatible, assortment would require that we could generate
a child with green eyes and red hair.
RAR: The random assorting recombination operator, a generalised form of uniform
crossover, has been previously defined (Radcliffe, 1992). It proceeds by placing all
alleles from both parents in a conceptual bag (possibly with different multiplicities),
and then repeatedly draws out alleles for insertion into the child, discarding them if
they are incompatible with those already there. If the bag empties before the child is
complete, which can happen if not all combinations of alleles are legal (so that the
representation is non-orthogonal) remaining genes are set to random values that are
compatible with the alleles already present in the child.
GNX: A generalised version of N -point crossover has also been defined (Radcliffe
& Surry, 1994a). This proceeds in much the same way as standardN -point crossover,
dividing the two parents with N cut-points, and then using genetic material from
alternating segments. The alleles within each segment are tested in a random order
for inclusion in the child, and any remaining gaps are patched by randomly select-
ing compatible alleles first from the unused alleles in the parents, and then from all
possible alleles.

4. Ergodicity. This demands that we select operators such that it is possible to move
from any location in the search space to any other by their repeated action. (Typically
a standard mutation operator is sufficient.)
BMM: Binomial minimal mutation, a generalisation of standard point-wise muta-
tion, has been proposed in Radcliffe & Surry (1994a). Minimal mutations are de-
fined to be those moves which change the fewest possible number of alleles in a so-
lution (in non-orthogonal representations it may be necessary to change more than
one allele at a time to maintain legality). BMM performs a binomially-distributed
number (parameterised by the genome length and a gene-wise mutation probability)
of minimal mutations, and does not forbid mutations which ‘undo’ previous ones.
Hill-climbers: the definition of representation-independent “minimal mutation” al-
lows us to define a number of representation-independent hill-climbing operators,
and to define memetic algorithms based on the idea of searching over a sub-space
of local-optima (Radcliffe & Surry, 1994b).

Using these operators, we can define algorithms which are independent from any
particular representation or problem, such as the example shown below. Note that every
step of the algorithm is precisely defined, and that given a representation of a problem
domain, we can mathematically derive a concrete search strategy suitable for implemen-
tation on a digital computer (see section 4). This is different from traditional evolution-



ary algorithms, in which steps 4 and 5 would have to be modified for any problem do-
main which required a new representation space.

A representation-independent evolutionary algorithm

1. Generate an initial population by randomly sampling p times from the space of chro-
mosomes.

2. Evaluate the pmembers of the initial population via the growth and fitness functions.
3. Select two parents using binary-tournament selection.
4. Recombine the parents using RAR.
5. Mutate the resulting child using BMM.
6. If the child does not exist in the population, evaluate it and replace the member with

the worst fitness.
7. Repeat to step 3 until termination criterion.

4 Search Strategies

In order to construct a practical search strategy for a given problem domain, we simply
combine a formal algorithm with an appropriate representation of the problem domain.
There is no need to construct new move operators, as we simply instantiate those defined
in the formal algorithm of choice. Since exactly the same formal algorithm (for exam-
ple, that shown above) can be instantiated for two different representations (of either the
same or different problem domains), one can make much more definite statements about
the quality of the algorithm itself (as it is defined independently of any problem). It is
also possible to fix the representation and vary the algorithm, allowing more meaningful
comparisons between algorithms.

For several of the representations shown in table 1, the generalised operators de-
fined in section 3 reduce to traditional forms. For example, for any orthogonal repre-
sentation, R�, RTR and RAR all reduce to uniform crossover (Syswerda, 1989), GNX
reduces to N -pt crossover, and BMM becomes simple gene-wise point mutation. For
the Dedekind real representation, R�, RTR and RAR reduce to blend crossover with pa-
rameter � � �, as defined by Eshelman & Schaffer (1992) and widely used in evo-
lution strategies (Baeck et al., 1991), and BMM is equivalent to gaussian creep muta-
tion (Surry & Radcliffe, 1996). If we consider the undirected edge representation for
the traveling sales-rep problem, RAR becomes a variant of edge recombination (Whit-
ley et al., 1989) and R� reduces to a weaker version of the same operator. BMM here
involves a binomially distributed number of sub-tour inversions, whereas for the city-
position representation, BMM reduces to a binomially distributed number of city ex-
changes (Radcliffe & Surry, 1994a).

Such reductions imply that formal algorithms defined using these operators reduce
to commonly used search strategies in the relevant problem domains. To illustrate, the
algorithm shown above is instantiated below for both the traveling-sales rep problem
using the undirected-edge representation, and for a real-parameter function optimisation
problem using the Dedekind representation. This results on the one hand on a strategy
based on edge-recombination and sub-tour inversions, and on the other in one based on
blend-crossover and gaussian creep-mutation. Both of these strategies have been widely
used in their respective domains, but it was not clear before now that they were exactly
the same formal algorithm.



Search strategy as algorithm plus representation

Problem domain: TSP Real-parameter opt.

Representation: Undirected-edges Dedekind

Choose initial population: of random tours of random vectors

Evaluate each solution: by measuring tour length using provided f�x�

Select two parents: using binary-tournament selection

Recombine parents using: variant of edge-recomb. BLX-�

Mutate the child with : binomial number of sub-
tour inversions

gaussian creep-mutation
for each parameter

Evaluate, replace worst: if the child does not exist in the population

Repeat: until termination criterion

Note that both the representation and algorithm are mathematical constructions and
need not be directly related to the actual way in which the data structures and computer
code for the resulting search strategy is implemented on a digital computer�. Thus, rather
than simply plugging together different bits of computer code, we plug together different
bits of mathematics from which we can formally derive an actual implementation in a
well-specified way. For example, the (formal) Dedekind representation for real numbers
has (in the limit) an infinite number of genes, yet it is a simple matter to mathematically
derive forms of the various operators suitable for (finite!) implementation.

5 Summary

This paper has presented a more formal approach to evolutionary search, by separating a
search strategy into a representation and an algorithm. We have introduced a disciplined
methodology for attacking new problem domains—instead of simply using evolutionary
“ideas” to invent new operators, one need only provide a characterisation of the prob-
lem that explicitly captures beliefs about its structure, and then instantiate an existing
algorithm with the derived representation. This applies equally to problems with non-
orthogonal representations where traditional evolutionary algorithms are inapplicable.
We have demonstrated, by way of example, that identical algorithms can be applied to
both the TSP and real parameter optimisation, yielding familiar (but apparently quite
different) concrete search strategies.

Because these formal algorithms are independent of any particular representation, it
is possible to transfer them to arbitrary problem domains, and to make meaningful com-
parisons between them. By making the rôle of domain knowledge more explicit we are
also directed to more reasoned investigation of what makes a good representation for a
given problem. Further investigations will build on these ideas to construct a more com-
plete taxonomy of representations, and to investigate issues of algorithmic performance
and quality of representation.

� Thus the title of this paper has been inspired by but differentiated carefully from the prior works
by Wirth (1976) and Michalewicz (1992).



References

T. Bäck, F. Hoffmeister, and H.-P. Schwefel, 1991. A survey of evolution strategies. In Proceed-
ings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann (San
Mateo).

L. J. Eshelman and D. J. Schaffer, 1992. Real-coded genetic algorithms and interval schemata. In
D. Whitley, editor, Foundations of Genetic Algorithms 2. Morgan Kaufmann (San Mateo, CA).

D. E. Goldberg, 1989. Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley (Reading, Mass).

D. E. Goldberg, 1990. Real-coded genetic algorithms, virtual alphabets, and blocking. Technical
Report IlliGAL Report No. 90001, Department of General Engineering, University of Illinois
at Urbana-Champaign.

J. J. Grefenstette, 1984. GENESIS: A system for using genetic search procedures. In Proceedings
of the 1984 Conference on Intelligent Systems and Machines, pages 161–165.

J. H. Holland, 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press
(Ann Arbor).

Z. Michalewicz, 1992. Genetic Algorithms + Data Structures = Evolution Programs. Springer
Verlag (Berlin).

I. M. Oliver, D. J. Smith, and J. R. C. Holland, 1987. A study of permutation crossover operators
on the travelling salesman problem. In Proceedings of the Third International Conference on
Genetic Algorithms. Morgan Kaufmann (San Mateo).

N. J. Radcliffe and P. D. Surry, 1994a. Fitness variance of formae and performance prediction.
In L. D. Whitley and M. D. Vose, editors, Foundations of Genetic Algorithms III, pages 51–72.
Morgan Kaufmann (San Mateo, CA).

N. J. Radcliffe and P. D. Surry, 1994b. Formal memetic algorithms. In T. C. Fogarty, editor, Evo-
lutionary Computing: AISB Workshop, pages 1–16. Springer-Verlag, Lecture Notes in Computer
Science 865.

N. J. Radcliffe and P. D. Surry, 1995. Fundamental limitations on search algorithms: Evolution-
ary computing in perspective. In J. van Leeuwen, editor, Computer Science Today: Recent
Trends and Developments, Lecture Notes in Computer Science, Volume 1000, pages 275–291.
Springer-Verlag (New York).

N. J. Radcliffe, 1991a. Equivalence class analysis of genetic algorithms. Complex Systems,
5(2):183–205.

N. J. Radcliffe, 1991b. Forma analysis and random respectful recombination. In Proceedings of
the Fourth International Conference on Genetic Algorithms, pages 222–229. Morgan Kaufmann
(San Mateo).

N. J. Radcliffe, 1992. Genetic set recombination. In D. Whitley, editor, Foundations of Genetic
Algorithms 2. Morgan Kaufmann (San Mateo, CA).

N. J. Radcliffe, 1994. The algebra of genetic algorithms. Annals of Maths and Artificial Intelli-
gence, 10:339–384.

P. D. Surry and N. J. Radcliffe, 1996. A formalism for real-parameter evolutionary algorithms
and directed recombination. In submitted to Foundations of Genetic Algorithms IV. (San
Diego).

G. Syswerda, 1989. Uniform crossover in genetic algorithms. In Proceedings of the Third Inter-
national Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

M. D. Vose and G. E. Liepins, 1991. Schema disruption. In Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms, pages 237–243. Morgan Kaufmann (San Mateo).

D. Whitley, T. Starkweather, and D. Fuquay, 1989. Scheduling problems and traveling salesmen:
The genetic edge recombination operator. In Proceedings of the Third International Conference
on Genetic Algorithms. Morgan Kaufmann (San Mateo).

N. Wirth, 1976. Algorithms + Data Structures = Programs. Prentice-Hall (Englewood Cliffs,
NJ).

D. H. Wolpert and W. G. Macready, 1995. No free lunch theorems for search. Technical Report
SFI–TR–95–02–010, Santa Fe Institute.

This article was processed using the LATEX macro package with LLNCS style


