
Appears in "Foundations of Genetic Algorithms 2", Ed: D. Whitley, Morgan Kaufmann (San Mateo, CA), 1992.

Genetic Set Recombination

Nicholas J. Radcliffe
njr�epcc�ed�ac�uk

Edinburgh Parallel Computing Centre

University of Edinburgh

King’s Buildings

EH9 3JZ

Scotland

Abstract

The application of genetic algorithms to optimisation problems for which the
solution is a set or multiset (bag) is considered. A previous extension of schema
analysis, known as forma analysis, is further developed and used to construct
principled representations and operators for problems in this class. The exten-
sions to forma analysis include the introduction of genes whose values cannot
be assigned independently and a method for mediating between desirable but
sometimes incompatible properties of recombination operators.

1 Introduction

This paper is concerned with optimisationproblems for which the solutionis a set or multiset
(bag). Examples include selecting an investment portfolio, choosing a connectivity for a
neural network and finding the best sites for a network of retail outlets given a choice of
possible locations. Both the case in which the size of the set or multiset is fixed and the
case in which it is subject to optimisation are considered.

The approach taken is based onforma analysis, an extension to schema analysis (Hol-
land, 1975) developed previously (Radcliffe, 1991a, 1991b). Section 2 presents a brief
review of forma analysis, but the reader unfamiliar with this approach may find it helpful to
read Radcliffe (1991b), which provides a gentler introduction. Various formae (generalised



schemata) for sets and multisets are introduced in sections 4– 6, and suitable recombination
operators for their manipulation are constructed. The key problems with set and multiset
optimisation arise when their size is constrained. In this case, the natural formae are said
to benon-separable, and the construction of satisfactory recombination operators is espe-
cially hard. This difficulty is tackled in section 5.2 by introducing genes whose values
cannot always be assigned independently. This is achieved through the formalism ofnon-
orthogonal bases. A new recombination operator, calledrandom assorting recombination,
is introduced to deal with this case in section 7.

2 Forma Analysis: Summary and Definitions

This section reviews forma analysis as developed in Radcliffe (1991a, 1991b). In later
sections this will be used to analyse recombination of sets and multisets.

2.1 Equivalence Relations and Formae

Let S be a search space and let� be a set of equivalence relations overS. Then the
equivalence classes of all the equivalence relations in� are referred to asformae, which are
generalisations of schemata. The set of all formae induced by a set of equivalence relations
� will be written����. Formae satisfy the “schema theorem” (Holland, 1975) provided
that suitable disruption coefficients are chosen (Radcliffe, 1991a, Vose & Liepins, 1991).
Disruption is discussed further in section 7.3.

It will be assumed throughout this paper that there are enough equivalence relations in�
to ensure that specifying all of the equivalence classes to which a solution inS belongs
suffices to identify that solution uniquely.

2.2 Respect

A recombination operatorX can be conveniently described by a function
X � S � S �KX �� S (1)

which takes two parent solutionsA andB from the search space,S together with a control
parameterk � KX , and produces a child inS. The control parameter,k, determines which
of the (typically)many possible children is produced, so that for one pointcrossoverkwould
be the cross point and for uniform crossover it would be a binary mask. A recombination
operatorX is said torespect the set���� of formae induced by the equivalence relations
in � if and only if

�� � � �A � � �B � � �k � KX � X�A�B� k� � �� (2)
Thus respect requires that all children produced by recombination alone are members of all
formae to which both their parents belong. For example, suppose there were equivalence
relations for hair and eye colour in�. Then if both parents had blue eyes and brown hair,
respect would require that recombination only produce children with blue eyes and brown
hair.

2.3 Similarity Set

It is convenient to introduce the notion of thesimilarity set of two parents, which is—
loosely—the set of all solutions which share the characteristics that the two parent solutions
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Figure 1: A recombination operator is said torespect a set of formae if given any
pair of solutionsA andB, all of their children under recombination are members of
all the formae to whichboth parents belong. Thesimilarity set ofA andB, written
��A�B�, is the smallest forma which contains them both. This can be constructed
as the intersection of all formae containing both parents, illustrated above. Respect
amounts to the requirement that each child produced by recombination lies in the
similarity set of its parents. Equivalently, the imageX�A�B�KX � of the control
setKX should be a subset of��A�B�, as shown.

share. Formally, the similarity set ofA andB, written��A�B�, is defined by

��A�B� �
��

� � ����
�� A�B � �

�
� (3)

This is the intersection of all formae to which both parents belong—the smallest forma to
which they both belong provided that this intersection is itself an equivalence class induced
by some equivalence relation in�.

Respect can be seen to be identical to the requirement that every child lie in the similarity
set of its parents, as is illustrated in figure 1. This allows respect to be re-expressed as

�A�B � S � X�A�B�KX � � ��A�B�� (4)

2.4 Assortment

A recombination operatorX is saidproperly to assort the formae in���� if and only if

���� �� � ���� ��� � �� �� � e� �A� � �� �A� � �� 	 k � KX � X�A�� A�� k� � �� � ���
(5)

Thus proper assortment requires that, given parentsA� � �� and A� � ��, a single
recombination can generate a child in�� � �� provided this intersection is non-empty.
Continuing the same example used to illustrate respect, if one parent has blue eyes and the
other has brown hair, then recombination must allow the construction of a child with blue
eyes and brown hair, provided that these characteristics are compatible.

2.5 Separability and Random Respectful Recombination

A set ���� of formae is said to beseparable if it is capable of being simultaneously
respected and properly assorted. Therandom respectful recombination operator (R�)



makes a uniform random selection from the similarity set of the two parents. This operator
respects and properly assorts the formae if they are separable. To see this, recall that respect
is the requirement that children lie in the similarity set of their parents (equation 4). R�

guarantees this, and generation of any solution outside the similarity set would by definition
violate respect. So if respect and assortment are to be compatible conditions, any solutions
which the latter requires be capable of production must fall within the similarity set. Since
every solution in the similarity set is generated with non-zero probabilityby the R� operator,
it must properly assort as well as respect whenever these conditions are compatible.

2.6 Complete Orthogonal Basis

For present purposes an equivalence relation
 in � is conveniently expressed as a binary
function

� � S � S �� f 	� 
 g (6)
which returns 1 if its arguments are equivalent and 0 if they are not:

��A�B� �
n

� if A 
 B,
	� otherwise. (7)

The intersection of two equivalence relations��� �� � � can then be defined by

��� � ����A�B� �

�

� if ���A�B� � ���A�B� � 
,
	� otherwise.

(8)

Given this, a subsetE � � is said to constitute acomplete orthogonal basis for� provided
that

� (Completeness) Each relation� � � can be constructed as the intersection of some
subset of the basic relations:

�� � � 	E� � E �
�

E� � �� (9)

� (Orthogonality) Given any subset of the equivalence relations inE, the intersection
of each possible combination of equivalence classes (basic formae) induced by these
equivalence relations should be non-empty. Formally, let�� be the set of formae
induced by the equivalence relation� and given a subsetF of the equivalence relations
in �, let

�F �
Y
��F

��� (10)

the space of vectors of equivalence classes induced by the various relations inF . Then
orthogonality requires that

�F � E ����� ��� � � � � �jF j� � �F �

jF j�
i��

�i �� � e � (11)

This means, in effect, that the basic equivalence class (basic forma) can be chosen
independently for each basic equivalence relation inE without introducing incompat-
ibilities. (It should be noted that the definition of orthogonality given here is different
from that given in Radcliffe (1991b). The earlier definition, which required only pair-
wise compatibility between basic equivalence relations, is not strict enough for the
purposes of this paper, and is altogether a less satisfactory definition.) If equation 11 is
satisfied only for setsF up to some sizeN then the basis will be said to beorthogonal
to order N .



2.7 Genes, Alleles and Gene Transmission

A recombination operator is said to bestrictly transmitting if it is the case that for each
basic equivalence relation� � � the children produced by recombination always lie in
the same basic forma as one or other of the parents. (Equivalently, every child should be
equivalent to at least one of its parents under each basic equivalence relation.) Strict gene
transmission trivially implies respect. Basic equivalence relations can be identified with
genes, and basic equivalence classes (basic formae) withalleles. Thus if eye colour were
one of the basic equivalence relations, eye colour would constitute a “gene” with alleles
“blue”, “green” and “brown”.

2.8 Example: Schemata

In later sections formae which differ significantly from schemata will be introduced, but
for illustration the characteristics of one-point crossover, uniform crossover� and random
respectful recombination (R�) are compared for the case ofk-ary (basek) schemata in
table 1.

Schemata can be identified as equivalence classes induced by certain equivalence relations
as follows. Consider the set of equivalence relationsf�ig, defined by

�i�A�B� �
n

� if Ai � Bi,
	� otherwise, (12)

which relate two solutions if they have the same value (allele) for theith gene. Theith such
equivalence relation can conveniently be denoted

�i � � � � � � � (13)

where is the familiar “don’t care” character used to describe schemata, and the “care”
symbol occurs at theith position. The set of such equivalence relations over all positions
i induce all first order schemata (basic formae, alleles) and form a complete orthogonal
basis for equivalence relations constructed by the arbitrary intersection of members of the
basis. Such intersected equivalence relations induce all higher order schemata.

One-point, two-point and uniform crossover can immediately be seen to transmit genes,
because each of a child’s genes comes from one or other parent. By virtue of their strict
transmission, these operators also plainly respect schemata. While uniform crossover also
properly assorts schemata, because a child can be constructed with any combination of
its parents’ genes in a single recombination, one-point crossover does not, because
	
	
cannot be constructed from parents				 and



. It does, however, weakly assort in the
sense that repeated incestuous recombination will allow an arbitrary admixture of parental
genes.

R� is guaranteed to respect and properly assort schemata since schemata can be seen to be
separable by virtue of their separation by uniform crossover. R� can be implemented by
initially copying across all genes common to the two parents into the child and then filling
remaining positions with random alleles. Except in the casek � �, this random allocation
of alleles to genes which take on different values in the parents prevents random respectful
recombination from strictly transmitting genes.

�with parameter half, i.e. with each bit in the mask equally likely to be one or zero.



Table 1: Summary of the characteristics of various recombination operators.

Operator Respect Assortment Gene Transmission

one-point � weak �

two-point � weak �

uniform � proper �

R� � proper k � � only

3 Sets and Multiset Recombination

Recall that the distinction between a set and a multiset is that duplication of elements is not
significant in sets, so that

f a� a� b g  f a� b g� (14)

whereas in multisets (also known as “bags”) an element may appear more than once

fja� a� bjg �� fja� bjg� (15)

(The notationfj � � � jg is used in this paper to indicate a multiset.) A number of different
set and multiset optimisation problems may be distinguished. In general there will be a
“universal set”,E , from which elements are drawn. The aim is to construct a set or multiset
consisting of elements drawn from this universal set so as to optimise some property of
the resulting set or multiset. Examples could include finding locations for bottle banks
so as to maximise recycling in some area, selecting members of a committee to make a
environmental impact assessment or choosing connections in a neural network to minimise
its average learning time to some acceptable error (Radcliffe, 1992). Whitley (1987) has
studied the use of genetic search over restricted poker hands using a multiset formulation;
this is discussed in Radcliffe (1990).

4 Recombining Fixed-Size Sets

Given a universal setE , the search space for sets of fixed sizeN is

S �
�
A � P�E�

�� jAj � N
�
� (16)

(figure 2), whereP�E� is thepower set (set of all subsets) ofE :

P�E� � fB � Eg � (17)

4.1 Equivalence Relations and Formae

Given a universal setE , with a � E , and solutionsA�B � S, let

�fag�A�B� �

�

� if a � A �B or a �� A �B,
	� otherwise.

(18)
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Figure 2: The equivalence relation�fag for fixed size sets of size two drawn from
a universeE � fa� b� c� dg partitionsS into two formae,�a, consisting of those
sets which containa and��a consisting of those which do not.

This equivalence relation induces two equivalence classes, one comprising the solutions
containing the elementa and another comprising those which do not (figure 2). There is
clearly an equivalence relation�fxg of the form described by equation 18 foreach x � E .
Moreover, these are intuitively natural candidates for a basis for a set� of equivalence
relations which might generate all formae specifying the presence or absence of any subset
of the elements inE . As will now be demonstrated, if the rule for intersection of equivalence
relations described by equation 8 is followed, the set

E �
�
�fxg

�� x � E � (19)

forms a basis, orthogonal to some orderK, for a set of equivalence relations� which
induces a useful set of formae.� can be defined by

� �
n
�
��� 	E� � E � � �

�
E�

o
� (20)

To see this, consider the intersection of�fag and�fbg, which will be denoted�fa�bg.
According to the definition of intersection for equivalence relations (equation 8)

��fag � �fbg��A�B� �

�

� if �fag�A�B� � �fbg�A�B� � 
,
	� otherwise.

(21)

This equivalence relation, illustrated in figure 3, induces four equivalence classes, which
might conveniently be written

�ab � fA � S
�� a � A� b � Ag�

�a�b � fA � S
�� a � A� b �� Ag�

��ab � fA � S
�� a �� A� b � Ag�

��a�b � fA � S
�� a �� A� b �� Ag�

(22)

The generalisation of this is rather obvious. A general equivalence relation,� � �, has
an associateddescription set, conveniently writtenh�i, which is a subset of the universal
setE . Members of the search space (themselves subsets ofE) are then equivalent under�
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Figure 3: The equivalence relation�fag for fixed size sets of size two drawn from
a universeE � fa� b� c� dg partitionsS into two formae,�a, consisting of those
sets which containa and��a consisting of those which do not.

precisely if they contain the same subset of the members of the description seth�i (figure 3).
Formally,

��A�B� �

�

� if h�i �A � h�i �B,
	� otherwise.

(23)

It is clear thatE (defined in equation 19) does indeed form a basis for�, but that this basis
is not fully orthogonal. Completeness follows because

�� � � � � �
�

x�h�i

�fxg� (24)

so that every relation can be expressed as an intersection of the basic relations defined in
equation 19, as required for completeness (equation 9). Orthogonality to orderK follows
provided that for up toK basic equivalence relations it is possible independently to choose
whether or not a set should include the element labelling the basic equivalence relation.K
is given by

K � max fN� jEj �Ng� (25)

To see this, notice that ifjEj � �N thenK � N , because after pickingN elements to
include it would be impossible to include anN � 
th. Similarly, if jEj � �N then once
jEj � N elements had been chosen for exclusion from the set it would be impossible to
exclude any more. The lack of full orthogonality will prove to be problematical when
recombination operators are constructed.

A general forma� induced by an equivalence relation� � � can then be characterised by
a partition of the description seth�i. It thus becomes convenient to describe a forma by a
2-tuple

h�i � ���� ��� (26)

where
�� � �� � � e (27)

and
�� � �� � h�i (28)



with the interpretation

A � � ��
�
A � �� � �� andA � �� � � e

�
� (29)

This says that a setA is a member of the forma� if and only if it contains all those elements
in �� and none of those in��. Having introduced this formalism, it is possible to identify
the similarity set of two solutions with respect to the formae���� induced by�. This will
allow the random respectful recombination operator R� to be constructed.

Recall that the similarity set of two solutions is defined by

��A�B� �
��

� � ����
�� A�B � �

�
� (30)

ClearlyA andB will share membership of a forma� if and only if

A � �� � B � �� � �� (31)

and
A � �� � B � �� � � e � (32)

Equation 31 can be satisfied if and only if

�� � A �B (33)

and equation 32 can be satisfied if and only if

�� � E � �A �B�� (34)

where the minus sign denotes set subtraction. It is thus clear that when performing an
intersection of all formae satisfying these conditions the similarity set as specified in
equation 30 must be described by

h��A�B�i �
�
A �B� E � �A �B�

�
� (35)

The R� operator makes a random (uniform) selection from this similarity set. For example,
with the universe

E � f a� b� c� d� e� f g (36)

andN � ,

h��fa� b� cg� fa� d� eg�i �
�
fa� b� cg� fa� d� eg� E �

�
fa� b� cg� fa� d� eg

	�

�
�
fag� ffg

�
� (37)

This describes the forma containing those sets which containa and excludef :

��fa� b� cg� fa� d� eg� �
n
fa� b� cg� fa� b� dg�fa� b� e� g�fa� c� dg� fa� c� eg� fa� d� e� g

o
�

(38)
Thus, R� for these formae can be understood as an operator which

1. copies all the elements which are common to the two parents into the child;

2. fills the remaining places in the child with a random selection of the unused elements
from the two parents.



A child C of A andB thus has the natural properties

A �B � C � A �B� (39)

It is clear, therefore, that in this case R� strictly transmits genes, a gene being labelled
by an element ofE and an allele corresponding to the presence or absence of that element
(equation 18). Notice, however, that the formae are not separable, with the consequence that
neither R� nor any other respectful operator can assort them. To see this, simply observe
thatfa� b� cg is a member of the forma�bc andfa� d� eg is a member of the forma�d but that
R� cannot produce a member in the intersection�bc � �d � �bcd of these formae because
respect restricts the choice of children to those in the similarity set given in equation 38.
This arises directly from the restriction to fixed-size sets. A way of trading-off respect and
assortment is discussed in section 7.

An alternative way of viewing this operator is to imagine a conventional linear chromosome
in which every position represents an element from the universal set, and to imagine an
operator like uniform crossover, but constrained so that the total number of 1’s in the child
is constant and equal toN , the fixed size of the set.

5 Recombination of Fixed-Size Multisets

5.1 Equivalence Relations and Formae

The extension of the previous case from sets to multisets is in essence simple, but involves
one complication. The basic idea will be that rather than specify whether or not certain
elements are in the multiset, a forma will specify themultiplicitiesof some elements. Again,
assume thatE is a universal set from which all elements are to be drawn, but that elements
may now be taken more than once. Then letPm�E� be themultipower set of E , that is, the
set of all multisets whose elements are drawn fromE . Then themultiplicity function

m � E � Pm�E� �� Z
� � f	g (40)

is defined so thatm�x�A� is the number of copies ofx in the multisetA.

A forma for multisets could either specify exact multiplicities for certain elements or could
give bounds on their multiplicities. Since the former is a special case of the latter, where
the bounds are maximally tight, the more general case will be examined.

A forma is now conveniently described by a set of 3-tuples of the form�x�N �

x� N
�

x� each of
which is understood to specify that the multiplicitym�x�A� of the elementx in the multiset
A lies in the inclusive rangeN �

x toN �

x . For example, a forma� with the description set

h�i � f�a� 	� 	�� �b� 
� �g (41)

contains all those multisets overE of sizeN which contain no copies ofa and contain
between one and three copies ofb (figure 4). Such formae are closely related to the “range
formae” discussed in Radcliffe (1991a).

5.2 Non-Orthogonality

There are a number of sets of equivalence relations which could be constructed to generate
these formae. An obvious starting point is equivalence relations which induce formae
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Figure 4: A visualisation of the forma� which has the description seth�i �
f�a� 	� 	�� �b� 
��g. The full ranges for elementsc to f correspond to the “don’t
care” character familiar from conventional schemata.

defined with respect to a single elementx from E . The equivalence relation� which
induces the forma described byh�i � f�x�N�

x� N
�

x�g would have the same description set

h�i �
�
�x�N �

x� N
�

x�
�

(42)

and would be defined by

��A�B� �


����
���


� if �m�x�A� � N �

x andm�x�B� � N �

x�

orm�x�A��m�x�B� � �N �

x� N
�

x�

or �m�x�A� � N �

x andm�x�B� � N �

x�,

	� otherwise,

(43)

where
�N �

x� N
�

x� �
�
n � Z

�� N �

x � n � N �

x

�
� (44)

As was the intention, formae can now specify a range of multiplicities for any element and a
single equivalence relation will be seen to suffice to define up to three ranges simultaneously.
The natural candidates for a basis are the equivalence relations which divide the range of
multiplicities for a single element into a lower portion and an upper portion, as shown in
figure 5,

E �
n
� � �

��� h�i � f�x� 	� N �

x�g� x � E � N
�

x � �	� N��
o

(45)

whereN� is the maximum allowed multiplicity for an element. These equivalence relations
can easily be seen to be complete, for any equivalence relation with a description set
f�x�N �

x� N
�

x�g can be constructed as an intersection of the relations with description sets
f�x� 	� N �

x� 
�g andf�x� 	� N �

x�g (figure 6). Equivalence relations defined with respect to
more than one member ofE can then be constructed trivially by intersection.

It is easy, however, to see that the relations inE do not satisfy the condition of orthogonality
specified in equation 11. To verify this, simply note that if a multiset is a member of the
forma with description setf�x� 	� 
�g (induced by��, as labelled in figure 5) it cannot
also be a member of the forma with the description setf�x� �� N��g (induced by��) as
would be required ifE were orthogonal (equation 11). This is because no multiset can have
both fewer than two and more than three copies of the elementx. Thus a multiset cannot
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Figure 5: The set of equivalence relations with description sets of the form
f�x� 	� N �g divide the range�	� N �� into a lower and and upper portion as shown:
the equivalence relations may be thought of as simple dividing lines at integer-
plus-half values.

be constructed with independent choice of its forma membership of for the equivalence
relations�� and��, as shown in figure 5, violating orthogonality.

Rather than abandon this potential basis, it is instructive to return to the analogy with
linear algebra which led to the original formulation of the conditions on a basis, namely
completeness and orthogonality. In linear algebra there is a weaker notion than orthogonality
known aslinear independence: a set of vectors is said to be linearly independent if no one
of them can be expressed as a linear combination of the others. Following this analogy, the
following definition suggests itself:

� (Independence) A setE of equivalence relations will be said to beindependent if no
one of the relations� � E can be expressed as the intersection of some subset of the
others, i.e.

�� � E 	� E� � E � f�g �
�

E� � �� (46)

The setE defined in equation 45 satisfies this condition of independence,� as well as
completeness.

The purpose of introducing the notion of a complete orthogonal basis for a set of equival-
ence relations was to generalise the notion of a gene and allow a principle of strict gene
transmission to be extended to more general formae. It will be demonstrated below that the
weaker notion of a non-orthogonalindependent basis suffices for the definition of genes,
and thus is adequate for the original purpose. Using the same definition of genes and alleles
for non-orthogonal bases as for orthogonal bases, (i.e. genes are the basic equivalence
relations and alleles are the basic equivalence classes) it is now possible to construct the
random transmittingrecombination operator (RTR) induced by the basisE for�, described
by equation 45.

�A rather minor point which should nevertheless be made in passing is that the formae now being
considered violate closure as discussed in Radcliffe (1991a, 1991b): this turns out to be unimportant.
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Figure 6: Any equivalence relation� defined on a single element can be construc-
ted as an intersection of relations from the basisE, defined by equation 45. Here
� has the description seth�i � f�x� �� �g and is constructed as the intersection
of �� with description seth��i � f�x� 	� 
�g andh��i � f�x� 	� �g.

5.3 Random Transmitting Recombination

The random transmitting recombination operator� (RTR) can be defined in a way similar to
random respectful recombination (R�), the difference being that instead of selecting from
the entire similarity set of the two parents, RTR selects from that subset of solutions which
share every gene with at least one parent. This subset, which for parentsA andB is written
��A�B�, is called theirdynastic potential, and is defined by

��A�B� �
�
C � ��A�B�

�� �� � E � ��C�A� � 
 or��C�B� � 

�
� (47)

The RTR operator picks each element in the dynastic potential of the parents with equal
probability, and both strictly transmits genes (which trivially implies respect) and properly
assorts formae, provided that these conditions are compatible. (In the special case ofk-ary
schemata, RTR is identical to uniform crossover with parameter half.)

5.4 Application to Fixed Size Multisets

The formalism developed above can now be applied to the problem of recombining fixed-
size multisets. The similarity set of two solutions (now multisets) is the forma with the
description set

h��A�B�i �
n
�x�N �

x� N
�

x�
��� N �

x � min
�
m�x�A��m�x�B�

�
�

N �

x � max
�
m�x�A��m�x�B�

�o
.

(48)

This similarity set contains all those multisets of the given fixed sizeN which have at least
as many copies of each element as the parent with fewer copies, and no more than the
number held by the parent with more. For example, if the chosen fixed size for the multisets
is five, and the universal setE is given by equation 36, then given

A � fja� a� a� b� cjg� (49)

�previously calledinheritance crossover



and
B � fja� b� b� c� djg� (50)

the similarity set��A�B� is described by

h��A�B�i �
�
�a� 
� �� �b� 
� ��� �c� 
� 
�� �d�	� 
�� �e� 	�	�� �f� 	� 	�

�
� (51)

The similarity set itself thus contains those multisets containingfja� b� cjg together with
exactly two elements fromfja� a� b� djg. For fixed size multisets it happens that, given the
equivalence relations discussed, the dynastic potential of any parentsA andB is identical
to their similarity set. To see this, consider any basic equivalence relation� with the
description set

h�i � f�x� 	� n�g� (52)

This has two equivalence classes, described by

h��i � f�x� 	� n�g (53)

and
h��i � f�x� n� 
� N��g� (54)

If both parents belong to the same basic forma, then their similarity set is clearly a subset
of this forma, so gene transmission imposes no extra requirement. If, however, they belong
to different basic formae, then since there are only two of these, the requirement to lie in
their union is no restriction at all, because

�� � �� � S� (55)

Thus dynastic potentials for these equivalence relations are indeed identical to similaritysets
and so it can be seen that strict gene transmission is in this case no stronger a requirement
than respect. In this special case, RTR reduces to R�. This is not, of course, true for general
formae, as is shown by the difference for thek-ary schemata discussed in section 2.8.

Notice that the restriction to multisets of fixed size, as was the case with sets, ensures
non-separability, so that RTR and R� are unable to assort the formae discussed. This can
be seen by from the same example as was used in section 2.1 to demonstrate that formae
for fixed size sets are non-separable, re-interpreting the sets as multisets. This weakness is
discussed further in section 7.

6 Recombining Variable-Size Multisets

Variable-size multisets can be dealt with simply by relaxing the constraint of fixed size as
discussed in the previous section. The formae then arrived at are separable and random
transmitting recombination (which is in this special case again identical to R�) not only
properly assorts and respects the formae, but also strictly transmits genes.

In summary, R�/RTR for variable-size multisets simply inserts a number of copies of each
element from the universal set which is bounded by the number of copies in the two
parents, and in doing so strictly transmits genes and properly assorts the formae induced by
the equivalence relations generated by the independent basis of equation 45.



7 Assorting Non-Separable Formae

When there are non-separable formae, such as those discussed in this paper, the question
arises as to which among respect and proper assortment should be given priority. R� and
RTR both give priority to respect, but arguably proper assortment, which embodies the
exploratory power of the search, is more important.

The present section shows how it is possible to trade off the degree of violation of respect
with the “thoroughness” of assortment. (Here thoroughness may be taken to mean the
likelihood of generating the solutions required by assortment.) Recall that proper assortment
only requires that the probability of generating a child in the intersection of a given pair
of formae to which the parents belong be finite. (Equation 5 says that there must be some
control parameter which allows generation of a solution in the intersection, but does not
specify any required density of such parameters.) It is therefore technically possible to
guarantee proper assortment by defining an operator which respects the given formae with
a very high probability
� �, but with low probability� randomly selects a solution which
violates respect. (Indeed, mutation could be viewed as performing this rôle in combination
with a respectful recombination operator.) More narrowly, the choice of solution outside
the similarity set (the set of children allowed by respect) could be restricted to those which
are required to be capable of being generated by assortment. The parameter� can be
viewed as controlling the degree to which respect is violated. While any non-zero value for
� technically guarantees assortment, clearly the larger the value, the more thorough will be
the assortment.

7.1 Random Assorting Recombination

The followingrandom assorting recombination operator (RAR) uses these ideas to ensure
proper assortment by sacrificing respect (and, by implication, gene transmission) in a
controlled way. This operator takes a positive integer parameterw (for “weight”) which is
like an inverse of the parameter� discussed above.

1. Placew copies of each allele present in both parents in a bag (multiset).

2. Add to the bag one copy of each allele present in only one parent.

3. Repeatedly draw alleles from the bag without replacement. Whenever it is possible to
add the allele to the child being formed, do so; otherwise discard the allele. Continue
until the bag is empty or the child is fully specified, i.e. until a basic forma (allele) has
been chosen for every one of the basic equivalence relations (genes).

4. If the child is not fully specified at the end of this process, assign alleles to any
remaining genes at random, from among the remaining legal values.

A number of observations should be made about this operator.

� The operator is general, and can be applied to any problem in which genes are properly
specified in the sense used in this paper, provided that their number is finite.

� If the formae are induced by a set of equivalence relations with an orthogonal basis,
this operator will separate them, and reduces to RTR. To see this, simply observe that
the only circumstances in which it would not be possible to add an allele drawn from
the bag to the child would be those in which a different allele for the same gene had
already be chosen from the other parent.



� If the formae are separable, RAR will separate them. To see this, observe that if a
gene is common to both parents, only one allele will be placed in the bag for that gene
(albeitw times). In the initial phase of RAR’s operation, only combinations of alleles
which assortment requires will ever be included in the child. If, therefore, assortment
is compatible with respect, this cannot compromise the ability to include the shared
alleles in the child, as required by respect.

� The action of the operator is only unusual, therefore, when the formae are non-
separable. In other cases, the value ofw is irrelevant. With non-separable formae,
the higher the parameterw is set, the greater will be the degree of respect which RAR
achieves and the less thorough will be the assortment. This is because the higher
w is set, the more likely is it that alleles common to the two parents will be drawn
early, so that incompatibilities between respect and assortment will be more likely to
be concluded in favour of respect. General guidance as to the appropriate value forw
probably requires experimental evidence, thoughw � � has aesthetic appeal because
filling the bag then amounts merely taking every allele from each parent.

� Finally, the account of the RAR given describes its theoretical application. In most
circumstances it will be possible to find implementations which are very much more
efficient than that described, but which replicate its behaviour identically.

7.2 Example of Random Transmitting Recombination

Consider again the example used in section 4.1 to show that fixed-size sets are non-separable.
Recall thatE � f a� b� c� d� e� f g, the fixed size is 3 and the parents areA � f a� b� c g and
B � f a� b� d g. The full genetic description ofA is now the singleton forma

�abc�d�e �f � fAg� (56)

Similarly,B is given by
�ab�cd�e �f � fBg� (57)

Takingw � , the bag will initially be filled as follows:

fja� a� a� b� b� b� c��c� d� �d� �e� �e� �e� �f� �f � �f jg� (58)

Clearly drawing out a solution containingf c� d g is now possible in a number of ways, but
is not particularly likely becausea andb are each three times as likely to get drawn out at
each stage as arec andd. Notice that, just as there is a small possibility of being unable
to includea andb, there is a possibility of having to include, say,f , which is present in
neither parent. This would happen, for example, if the first three alleles drawn happened
to be�c� �d and�e. In this case, when the�f allele was chosen it would be discarded because it
is impossible for a solution to this problem to omitc� d� e andf , and in the final stage ane
allele would necessarily be introduced. This slightly counterintuitive behaviour is required
by assortment, and again becomes ever more unlikely asw is increased.

7.3 Forma Disruption

Depending partly on the weight used, random assorting recombination can be a fairly dis-
ruptive operator. As with other recombination operators, the amount disruption can be re-
duced by biasing the operator to take genes preferentially from one parent (Syswerda, 1989,
Spears & DeJong, 1991). This may well prove to be sensible in the current context. It may
further be appropriate to introduce linkage and reordering operators, though these are out
of vogue. Such extensions will not, however, be discussed in detail in this paper.



8 Summary

This paper has shown how forma analysis can be used to construct operators for principled
recombination of sets and multisets. A single operator, defined in generic terms and called
random assorting recombination (RAR), suffices for this. Previous work had introduced the
notion of a complete orthogonal basis for a set of equivalence relations and shown that when
such a basis exists a linear chromosome can be constructed which uniform crossover can
manipulate effectively in the sense that it transmits and properly assorts genes. This paper
has demonstrated that in cases where no orthogonal basis exists it may still be possible to
construct a non-orthogonal basis. Such a basis suffices for the definition of genes, but these
cannot be independently assigned because some combinations of alleles will be illegal.
Moreover, in some cases it will be possible to transmit and properly assort genes forming
a non-orthogonal basis, but conventional operators will be unable to do this. The RAR
operator is guaranteed to transmit and properly assort genes whenever this is possible. The
paper has further shown that when respect and assortment are incompatible, it is possible to
parameterise the degree of violation of respect and to use this to control the thoroughness
of assortment. The random assorting recombination operator provides a convenient and
general mechanism for doing this.
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