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Most scoring models are developed with small historical samples, typically in the region of 5,000—
10,000 customers. Modern computing hardware and software allows samples orders of magni-

tude larger than this to be used. This paper discusses the potential benefits of developing scor-

ing models using the bulk of the customer base, often leading to datasets containing millions of

individuals.

Much of the focus of the paper stems from viewing the “regression” or “weight setting” phase
of the development of a scoring system as simply one, relatively small, component of a much
larger process of building useful models for credit management. This larger process consists
of an investigative, exploratory process of repeated refinement in which models are constantly
redeveloped in order to ensure that their statistical formulations faithfully reflect the underlying
business goals.

Within this view, there is more scope for testing different mathematical definitions of “goods”
and “bads”, and of the precise predictions to be made by the scoring mechanism—for example,
the outcome period over which the likelihood of default is to be modelled, the severity of any
predicted losses or the profitability of the account or customer. This requires interactive explo-
ration of the available data, including the ability to test and refine hypotheses and to develop
trial models rapidly. From the business perspective, it is not only the predictive accuracy of the
model that is important, but also its explanatory power. We will illustrate the way in which inter-
active visualisation and interrogation can be used to pinpoint and correct weaknesses in scoring
models.

It is common practice for the customer base to be segmented and for separate scoring functions
to be developed for each segment, but such segmentations are usually rather static, with each
model being developed essentially independently. Again, the ability to handle the entire cus-
tomer base supports a more integrated view of the entire scoring function represented by a seg-
mentation and the models within it and allows this ensemble of models to be developed and
managed together. The current drive towards customer-based scoring, as distinct from product-
or account-based scoring, also inevitably requires larger datasets to be considered, not least be-
cause of the variety of product mixes typically held by different customers.

Even within the limited context of scorecard development, larger samples can be a more power-
ful tool than is generally recognised for avoiding “over-fitting”, controlling sampling error and
performing better validation. Many of the arguments against large samples fail adequately to
recognise the so-called “curse of dimensionality”, a phrase used to highlight the fact that when
large numbers of variables (dimensions) are being considered, every point becomes a statistical
outlier.

We shall conclude that in order to develop and understand more powerful, integrated scoring
models, it is highly beneficial to take advantage of the ability of modern computing technology
to handle much larger datasets than are conventionally used.



1 Introduction and Motivation

Current hardware and software allows datasets with hundreds of thousands or even millions
of records to be handled with comparative ease, and yet most scorecards are built with training
sets' of only a few thousand records, with perhaps 5,000-20,000 being the most common size.
This paper looks at the potential advantages of using significantly larger training sets, and the
dangers of failing to do so.

Throughout this paper, much of the emphasis is on the importance of non-additive effects even
in the context of conventional additive scoring, and much of the motivation for larger sample
sizes will derive ultimately from the “curse of dimensionality” (Bellman, 1961).

We begin in section 2 with some extremely simple illustrations of the problems of using small
datasets by looking at the variation in bad rates as a function of randomly generated variables
to give a feel for the scale of the problem, and to illustrate the basic ideas of interactions and the
curse of dimensionality. This section is largely descriptive and obvious, and may be skipped by
anyone who simply wants to “look at the numbers”.

After this, in section 3 we will present some straightforward experiments with varying sample
size in the context of additive scorecard development without interaction variables or segmen-
tation of the dataset. The results indicate that even in this simplest of cases, there are benefits
to be derived from significantly larger datasets than are used conventionally, clearly indicating
significantly greater benefits for more complex models.

In section 4, we assume that some given interactions (non-additive effects) are known to exist,
and explore the implication of a desire to exploit these on dataset size. Here, the assumption
is that we do not need to detect the interactions (because they are given), but merely to develop
scorecards that exploit them, either by introducing interaction variables, or by segmenting the
population. Here we shall see that rather larger sample sizes are required for training than is
the case when no non-additive effects are to be catered for.

Section 5 considers the case in which it is assumed that some interactions may exist, but that
they have not been identified. In this case, the problem becomes both to identify and exploit the
interactions. We consider a variety of means of detecting the interactions, and argue that still
larger training sets are needed in order to make this process effective.

2 Sampling and the Curse of Dimensionality

At base, the reason we shall find that we can benefit from large samples is that we are inter-
ested not only in single variable distributions, but distributions of two or more variables (cross-
distributions). For example, we shall be interested not only in bad rate as a function of age, and
bad rate as a function of income, but also of bad rate as a function of age and income.

2.1 Interactions

Figure 1 shows one case in which we might be interested in the considering two variables at
once. The graph on the left shows the bad rate as a function of some binary variable x;, show-
ing a much higher bad rate for customers with z; = 1 than for those with z; = 0. The centre
graph shows a similar picture for a second variable x5, exceptin this case customers with 2, = 1
exhibit a significantly lower bad rate than those with z; = 0. From these simple plots, one might
naively assume that customers with z; = 1 and z, = 0 (the two “bad” values) would have an
even higher bad rate, but in fact the plot on the right, showing bad rate as a function of the four

Lwe shall call the historical data available during model building the training set and the data used to assess the
performance of the model the test set.
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Figure 1: The single-variable bad rates show that z; = 1 is correlated with bad debt
(left plot), as is 5 = 0 (centre plot). We might therefore expect that the having both
of these attributes would lead to a very high bad debt rate, but in fact the right-hand
plot shows that there is a rather low bad debt rate associated with this group. This
is an example of a non-linear effect, giving rise to non-additivity.

Mean(Default) Mean(Default)

vThree

TIN
g

Bad rate f(x3) Bad rate f(x4) Bad rate f(x3,%4)

Figure 2: In this case, the bad rate is largely independent of the single variable val-
ues x3 and x4, as can be seen from the flat profile in the left and centre graphs. It can
be seen, however, that when both variables are considered, there is considerable de-
pendence on the values of z3 and z4. This is another example of a non-linear effect,
again giving rise to non-additivity.

possible pairs of values for z; and xz,, it can be seen that the bad rate is actually rather low for
people in this group.

The situation illustrated is an example of a non-additive effect, also known as an interaction. Such
effects are largely incapable of being modelled by simple additive scorecards when the char-
acteristics are identified with the variables xz; and z-, because the score contribution assigned
for having z; = 1 is independent of the value of z-. In this case, depending on the relative
populations of the four groups, it is likely that both variables would be included in the scoring
model with reasonable weighting, but that the interaction between the variables would degrade
the performance of the scorecard. Although a battery of techniques for accommodating non-
additive effects has been developed and is used in the credit scoring community, and these are
discussed in later sections, we think it is fair to say that non-additivity can be a major source of
inaccuracy in this type of scoring model.

Figure 2 illustrates a similar, but subtly different non-additive effect. In this case, neither x5 nor
x4 IS much use as a predictor independently, but the dependence of bad rate on their joint distri-
bution can be seen from the graph on the right to be considerable. In this case, a simple analysis
would lead to the exclusion of these variables from the scorecard, whereas in fact it can be seen
that they have considerable predictive utility.

2.2 Sampling Cross-distributions

The principal techniques used within the scorecarding community to handle non-additive ef-
fects are the creation of interaction variables and segmentation of the population into groups



within which interactive effects are relatively small. We consider both in detail in later sections.
Here, we focus particularly on the considerations that apply when sampling over more than one
variable, which is a necessary component of both approaches.

2.2.1 Some Very Simple Graphs

Suppose we have a population of 100,000, and two variables (characteristics) each of which we
divide into ten bins (attributes, or bands). If we use “equal population” bins (i.e. choose the bin
boundaries so that roughly equal numbers of records fall into each bin for each variable), it is
clear that we will have about 10,000 in each bin for each variable, and equally clear that if we
consider two-variable bins, we will have only around 1,000 records per bin. This is illustrated in
the top line of figure 3. In this case, both characteristics (x; and z») are random variables in the
range [0, 1], generated from a uniform distribution using the Marsaglia pseudo-random num-
ber generator (Marsaglia, 1984; Marsaglia et al., 1990). An immediate point to notice is that—
naturally—not only are the bins for the cross-distribution smaller, but the proportionate vari-
ance in their size is much larger. This is simply one manifestation of the “curse of dimension-
ality” (Bellman, 1961, Friedman, 1997), illustrating that as the number of dimensions grows (in
this case just from one to two!) any sample becomes increasingly poor.

The second line of figure 3 shows what happens when we now consider bad rate as a function of
these two variables, both independently (left and centre) and together (right). It is important to
remember here that z; and z, are uniform random variables. The bad rate is computed simply
as the ratio of the number of “bads” in the bin (n;) to the total number of records in the bin (n, +
ng). Notice how the bad rate varies from 3.1% to 6.0% in the joint bins, even though there can be
no true dependence between these variables at all, and how much larger this variation is than
the corresponding variation in the single-variable bins. (The actual bad rate over the 100,000
records is 4.9%.)

The third and fourth lines of figure 3 correspond exactly to the first and second respectively, ex-
cept that they now illustrate the corresponding situation for a (single) uniform random sample
of 5,000 records from the 100,000. The key point to note are that all the variances are signifi-
cantly increased, especially in the cross-distributions. This is, of course, simple a function of the
reduced effective sample sizes in each bin. (The overall bad rate in the sample of 5,000 is 4.6%.)

2.2.2 Discussion of the Simple Graphs

In scorecarding, the fundamental quantity that we need to estimate on a bin-by-bin basis is the
bad rate n,/(ny + ny). The graphs presented in the previous section suggest that we can quite
easily form rather poor estimates of these quantities, and that the likelihood of this increases
with decreasing overall sample size, and with decreasing bin size. When considering two or
more variables together, the dangers of small samples evidently increase exponentially. How-
ever, a number of objections may be raised to this broad line of argument, and we now discuss
these in turn.

e “You don’t need more goods than bads.”

It is often argued that if only a small number of “bads” are available, there is little benefit
in using more “goods”, and indeed it is sometimes argued that it is actually harmful to
use a very unbalanced sample with (say) all the “goods” as well as all the “bads”. From
the point of view of estimating the quantity of principal interest to us—the bad rate—this
is quite wrong. The bad rate n,/(n, + ny) depends on two quantities, n, and n;, and im-
proving the accuracy with which either is known decreases the error associated with the
bad rate. There are, however, implementational reasons why this benefit may in practice
be outweighed by other factors, and these are discussed in section 3.1.
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Figure 3: The top line shows the frequency distribution of two uniform ran-
dom variables (characteristics) divided into ten bins (attributes) and their cross-
distribution on a dataset of 100,000 records. Note that (naturally) the bin size is a
factor of ten smaller on the cross-distribution, and the variance in bin size is pro-
portionately much higher. The second line shows the bad rate as a function of these
variables. Since the variables are randomly generated, there is no real correlation
with the bad rate. The lower two lines are the same as the top two except that they
show the distributions and bad rates for a random sample of 5000 records from the
100,000. Notice the much larger variations in bad rate both for the two random vari-

ables independently and (even more) for their cross-product.



2.3

“It’s not a problem if you use stratified (grid) sampling.”

It may objected that the preceding discussion uses non-stratified samples, whereas a good
sampling procedure is stratified. This is true, and indeed is also discussed in section 3.1.
However, there are severe problems with stratification in large numbers of dimensions. It
is true that we could stratify by at least determining the proportion of “goods” and “bads”
that we sample, and there is every reason to do so. If we did this, the variances seen in the
various graphs would diminish. However, it is infeasible to stratify the entire sample, and
this is again due to the curse of dimensionality.

Consider even a very modest case of a scorecard with ten variables, each with five bins.

This gives 5'° cells to consider (a little under 10 million). In principle, we would like enough
points in each cell to form a reliable estimate of the bad rate! Such fully stratified (or “grid™)

sampling is clearly infeasible for any normally complex problem, even given an unlim-

ited universe of records from which to draw. In practice, the situation is even worse, be-

cause many of the combinations of attributes will not even exist in the population. This is

the essence of the curse of dimensionality, and justifies the claim that in high dimensional

space, ‘all samples are poor samples’.

“Interactions don’t matter for additive scorecards.”

A fundamental property of additive scorecards is that they are, as the name suggests, ad-
ditive, i.e. the score contribution from each variable (characteristic) is independent of the
values of other variables. It can therefore be argued that you only need to get a sample size
good enough to represent each bin (attribute) properly for the variable with most bins, and
it will be a good enough sample overall. There is a good deal of truth in this, and our main
motivations come from consideration of handling interactions directly (sections 4 and 5),
but there are also some subtleties even in the case where interactions are not being directly
considered. First of all, we are not performing a set of independent single-variable (bin-
wise) regressions and then combining the model using Bayes Theorem (e.g. Hand, 1981)
or some other combining methodology (e.g. Breiman, 1997). Rather, we are fitting a set
of hyper-surfaces with as many degrees of freedom as there are bins in all the variables,
and thus all variables do contribute to the regressions performed. This often results in
the weights for individual variables being significantly different from those that would
result from single-variable regressions, because of the non-uniform distribution of sam-
ples throughout the sample space. Secondly, note that we are not estimating the bin-wise
bad rates for each variable independently—we are using exactly the same set of records to
estimate the rates for each variable, potentially leading to artificial correlations in the er-
rors. Thus, although the curse of dimensionality is less problematical for additive models
than for other types of models, it does still have a (negative) effect.

Practical Limitations

To recapitulate, we have argued that

1.

our key task is to estimate the bad rate for various customer segments (bins or intersections
of bins);

in principle, larger sample sizes can only help with this task;

when we move beyond single-variable models, large samples are required to develop rea-
sonable estimates of ny/(ns + ny).

In order for increasing sample size to be assured (statistically) of having this beneficial effect in
practice, three conditions must be met:

1.

the quality measure that we use to assess scorecard performance must be insensitive to
the ratio of “goods” to “bads” in the population. More precisely, if we replicate any set
of records, the performance measure should not change. For example, if we took all the
“goods” and duplicated them, this should not change our performance measure.
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2. the solver (optimiser) must be optimising the given quality measure directly, not some sur-
rogate function.

3. the solver (optimiser) must optimise the model correctly (i.e. find the global optimum of
the quality measure).

These conditions, which are discussed in more detail in Radcliffe & Surry (1997), are not usually
met in practice. For example, consider the “standard” logistic regression scorecard measured
with Gini. The quality measure, GINI, actually does satisfy the stated condition, because it de-
pends only on the ordering assigned to records by the scoring model. However, when devel-
oping a logistic regression model, the quality measure actually used to perform the fitting is a
fitting error (to be minimised), and this is strongly affected by every point in the dataset. If the
good records are doubled, the model will be (loosely) twice as interested in fitting “goods” as
when each is present only once. Thus the quality measure seen by the optimisation is not the
one standardly used to assess the output of the scorecard build. Finally, unlike “linear” score-
card models, logistic models cannot be solved directly, so an indirect, iterative solver (such as
Newton-Raphson, or conjugate gradient) must be used, and such solvers do not, in general find
a global optimum of the function to which they are applied.

What this means in practice is that a larger development sample can result in worse (observed)
performance of the scoring model, even though the estimates of the bad rates in each segment
considered should be better. However, it is possible to avoid most of these problems by careful
manipulation of the form of the objective actually seen by the solver, and taking care over the
regression itself.

3 Single Additive Scorecards without Interaction Variables

3.1 Random and Stratified Sampling for Training Sets

Our first experimental results concern a relatively common case, namely additive scorecards
without interaction variables. We start from a historical sample of around 1 million records,
with a bad rate of around 1%, so that we have 10,000 “bads” available. We consider a fixed set of
ten characteristics, each with ten equal-population attributes. We then repeatedly build score-
cards using (local, bin-wise) linear regression models with a test set of roughly constant size (ap-
proximately half a million records) but vary the training set set from 5,000 to 500,000. The local
regressions are solved directly and precisely using a maximum likelihood assumption, which
effectively minimises the fitting error, and it should be noted that this measure is not indepen-
dent of the bad density, so we might expect some problems when the ratio of “goods” to “bads”
is not close to 1. We repeat these experiments for both weights-of-evidence models and non-
weights-of-evidence (“dummy variables”) models, and in each of these cases use both random
samples and samples balanced so as to have either a (roughly) equal number of “goods” and
“bads”, or (for the larger sample sizes) all the “bads” and the remainder of “goods”. No other
form of stratification was applied.

The results of these experiments are shown in figure 4. These results illustrate many of the prob-
lems anticipated above, showing that when we optimise against a function that is sensitive to
the density of “bads” in the sample, performance actually decreases with increasing sample size.

3.2 Reweighting Bads

To mitigate these effects, we repeated the experiments with models in which the bad records
were weighted in such a manner as to negate precisely the effect of density variation. The re-
sults for these experiments are shown in figure 5. In these cases, as would be expected, per-

formance continues to increase slightly with increasing sample size, and even the point where
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Figure 4: These graphs show the average Gini over ten runs on both the test set
(filled symbols) and the training set (open symbols) for a variety of sizes of test set.
In each case a test set of around half the population (c. 500,000 records) was reserved
and training sets were drawn as samples from the remaining 500,000 records. The
top graph shows performance using a one-weight-per-characteristic (weights-of-
evidence) model, using both a training set that is a pure random sample from the
population, and one which is stratified so that there are a roughly equal number of
“goods” and “bads” for small test sets, and in the case of the larger test sets, so that
all the available “bads” are included and the remainder of the sample is made up
of randomly selected “goods”. The bottom graph shows corresponding results for
a one weight per attribute (“dummy variables”) model, with both pure and strati-
fied random samples. Clearly performance on the test set peaks at relatively low
training set sizes when using stratified sampling, in the range 5,000-10,000, and
performance declines thereafter. This is due to the form of fitting error used in the
regression, as is discussed in the text.



strongly diminishing returns sets in is raised to training set sizes of at least 100,000. Thus these
results provide modest encouragement to us in our intuitive belief that the more accurate esti-
mates of the bad rate n; /(n, +n4) should lead to increasing performance, albeit with asymptotic
behaviour for large sample sizes.

4 Scorecards with Interaction: Non-linearity and the Curse of
Dimensionality

In the previous section we have seen evidence that provided proper care is taken, even con-
ventional additive scorecards can benefit from large sample sizes. We now consider the ben-
efits available from including interaction effects in scoring models. There are two main ways
to achieve this. The first is to build “interaction variables” which are single new variables that
summarise the effects of two others. For example, referring back to figure 1, we could build a
four-valued variable that summarises the four possible combinations of values. (This is a special
case in which the new variable has the same number of bins as the total number of bins in the
two source variables, because 22 = 2 + 2, but in the general case the natural interaction variable
has more bins.) The other principal method for handling interactions is to segment the popu-
lation on one or more of the variables involved in interactions and to build separate scorecards
for each subpopulation. The current section is not concerned with the problem of detecting in-
teractions, but simply with exploiting them; the detection of interactions is discussed in the next
section.

Suppose, then, that we know by whatever means that two given variables interact, and that we
form an interaction variable from these. Here we are interested in the benefits available from
exploiting the interactions by including the interaction variable in our model, and the sample
sizes required to do so.

Once we have created the summary variable, it could be seen conceptually as “just another char-
acteristic”, no different from any other in the scorecard. Thus it might be argued that the sam-
pling requirements are no different from any other variable. However, this misses the mark in
two important respects. First, precisely because it is an interaction variable, it is likely to be
highly correlated with existing characteristics, and thus affected by the kind of systematic sam-
pling biases discussed above. More importantly though, the new variable typically divides the
population into highly non-uniform segments. This is because the interaction tends to capture
a weakness in a simpler model over one or more relatively small segments; giving a relatively
large improvement in those segments (consider again figures 1 and 2). Thus the sample sizes
required to achieve robust estimates across the range of the interaction variable are necessar-
ily increased, compared to those required for characteristics which partition the population into
more or less equal sized segments.

Similar arguments apply when an interaction is used to segment the training data set, with a
separate additive scorecard being constructed for each. Here we clearly need sufficient data vol-
umes to achieve accurate estimates across all subpopulations.

Initial quantitative investigations of both these effects show promising results, and systematic
experiments are underway.

5 Interaction Variables, Segmentation and Variable Selection

The final aspect that we consider, having established in the previous section that interactions
can be important, and that modelling them can pay significant dividends, is to consider how we
might detect interactions, and thus find either useful segmentations or useful interaction vari-
ables. It seems clear that in this context the curse of dimensionality and the problems of small
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Figure 5: These graphs show the the same experiments as in figure 4 except that
now the “bads” have been weighted in such a way as to give them the same weight
as the “goods” in computing the fitting error for the regression, even when there are
significantly fewer of them. As intuition would suggest, in this case, performance
does not deteriorate with increasing training set size, and indeed, continues to im-
prove certainly up to a sample size of 100,000, and arguably to 500,000, although
clearly the benefits are modest.
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samples are going to be more acute than when simply exploiting interactions already known,
so we should expect more benefit from larger sample sizes.

We can imagine, and have investigated, various methods for detecting interaction variables.
Once particularly attractive method is to model the error on the training data (or, with great
care, the test data) using non-additive (non-linear) modelling techniques. That is, we compare
the model’s prediction to the known outcome, and attempt to characterise those segments on
which it performs poorly. This could be done either by choosing a cutoff score and modelling
false positives or false negatives together or separately, or by modelling the (continuous) differ-
ence between the predicted default probability assigned to each record and its actual (defaulting
or non-defaulting) historical behaviour. Perhaps the most obvious such technique is some form
of decision tree, such as CART (Breiman et al., 1984), especially if some form of lookahead is
used rather than the usual one-step optimal approach. Combinations of variables that show up
strongly in the tree are good candidates for interaction variables, and single variables appearing
in the tree, especially towards the top are good candidates for segmentation criteria.

Because we are now seeking non-linear interactions by examining multi-dimensional relation-
ships, all of the arguments in section 2 apply, and suggest the need for significantly larger sam-
ple sizes than those required in the simple situation of section 3. Effectively, we no longer desire
simply to estimate the bad rate within a fixed segment of the population, but are attempting to
define segments that have significantly “different” rates from those which the model predicts.
For example, in the example of figure 3, a robust model using only the two variables 2; and z»
would (hopefully!) predict an equal default rate across all variable values. Clearly no interac-
tion between the variables exists in reality, but consider the potential for misinterpretation if we
searched in the (z1,xz2) space for highly misclassified regions (bottom right diagram in figure
3).

As the methodology for searching for new interaction variables is difficult to completely auto-
mate, it is somewhat difficult to define a “fair” experiment to illustrate these effects. However,
we have successfully used the methodology in practice and are working towards quantifying
the effects more rigourously.

6 Summary

By building and testing several hundred scorecards on sample sizes of up to half a million records,
we have demonstrated that even in the simplest case signficant benefits can result from using
substantially larger samples than has traditionally been the case, and in fact larger than the biggest
possible balanced sample (taking all of the “bads” and the same number of “goods” at random).

At its most basic, the key is to make best estimates of the bad rate within each attribute group-
ing. When characteristics and attributes are fixed, the advantages of larger samples rest on well-
known statistical arguments. Of more interest in the incorporation of interactions in the stan-
dard additive scorecard. This requires both that relevant interactions be found, by examining
multidimensional distributions, and that they be weighted properly within the model. Both of
these tasks place stronger requirements on the samples sizes necessary to achieve the accuracy
required to develop robust models with respect to test-set data; ongoing investigations seek to
further quantify these results.
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