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Abstract. This paper describes a novel method for attacking constrained opti-
misation problems with evolutionary algorithms, and demonstrates its effective-
ness over a range of problems. COMOGA (Constrained Optimisation by Multi-
Objective Genetic Algorithms) combines two evolutionary techniques for multi-
objective optimisation with a simple regulatory mechanism to produce a constrained
optimisation method. It shares the universal applicability of penalty-function ap-
proaches, but requires significantly fewer free control parameters.

COMOGA takes a dual perspective, considering a constrained optimisation
problem sometimes as a constraint satisfaction problem, and sometimes as an un-
constrained optimisation problem. These two formulations are treated simultane-
ously, using a single population, by basing each selection decision on the basis of
either constraint violation or function value. A simple adaptive feedback mech-
anism couples the two formulations by adjusting the relative likelihood of these
choices. Unlike penalty function approaches, COMOGA dynamically adapts the
emphasis placed on constraint satisfaction and objective function value as the op-
timisation proceeds, usually yielding final populations which are both feasible and
highly fit.

COMOGA has been successfully applied to real industrial problems with com-
parable performance to highly tuned penalty function approaches. On a test suite
of constrained problems previously studied by Michalewicz, application of CO-
MOGA required minimal effort but proved superior to all previous evolutionary
methods known to have been applied; indeed it was the only method which found
feasible solutions in every run for every problem.

1 Introduction

It is a frequent criticism of evolutionary algorithms that published results are usually ob-
tained with contrived problems without constraints, leading to the suggestion that evolu-
tionary methods are unsuitable for tackling complex constrained optimisation problems.
Within the community, there is a wide-spread perception that penalty function methods
are a rather blunt instrument for handling general constraints (e.g. Michalewicz, 1992),
exhibiting great sensitivity to the values of their many free parameters, and feeding rather
too little informationback to the algorithm to allow it to handle the constraints satisfacto-
rily. While other methods are available for problems with explicit constraints (including
repair methods, Davis & Orvosh, 1993; smart decoders, Davis, 1987, 1991; and special
operators incorporating problem knowledge, Michalewicz & Janikow, 1991), these do



not have fully general applicability, and tend to require significant work for each new
class of problems tackled. There is thus a need for a method that combines the general-
ity of penalty function approaches with a greater feedback of information to the under-
lying search algorithm about the way in which progress is being made with the various
constraints under consideration.

In this paper we present such a method, COMOGA, based on ideas for multi-objective
optimisation. Section 2 presents an introduction to constrained optimisation and con-
straint satisfaction problems, and surveys the evolutionary techniques which have been
used to tackle such problems. Multi-objectiveoptimisation is reviewed in section 3, where
the natural fit with population-based algorithms is discussed, and a link is made between
multi-criterion optimisation and constraint satisfaction. In section 4 these two strands
are drawn together to motivate the COMOGA method, which is then described in de-
tail. The technique is demonstrated for a gas-network problem in section 5, and results
for a test suite of constrained optimisation problems previously studied by Michalewicz
are summarised in section 6.

2 Constrained Optimisation

2.1 Formulation

Many optimisation problems can be phrased as the minimisation� of a given functionf ,
over a search domainS:

Minimise
f � S �� R

subject to [the solution x � S satisfying certain equalities or inequalities].

The equations or inequalities that the solutionx must satisfy are known as constraints.
Solutions which satisfy all constraints are said to befeasible and the set of all such so-
lutions is called thefeasible region, SF . (Thus the set of optima,S�, is a subset ofSF .)
In aconstraint satisfaction problem, the objective functionf is discarded, with the goal
being simply to find any solution inSF .

Constraints can be characterised in various ways. An inequality constraint is said to
beactive at a pointx if it is satisfied as an equality atx. It is typical in constrained op-
timisation that a number of constraints are active for optimal solutions, so thatS� is at
the boundary of the feasible and infeasible regions (with the result that any weakening of
the constraints would changeS�). Indeed, in highly constrained problems it is often the
case that all feasible solutions are near this boundary, and that the volume of the feasible
region is negligible when compared with that of the unconstrained search domain. (Al-
though such problems are typically difficult, the converse is clearly not true, with many
difficult constrained problems having large feasible regions.)

The constraints onx are convenientlydivided into two (imprecise) categories—impli-
cit and explicit. Explicit constraints are those which can be reduced to simple conditions

� In this paper we assume, whenever appropriate, without loss of generality, that problems are
cast as minimisation problems



onx and are verifiable “by inspection” while implicit constraints are those which specify
a condition on some function ofx, that requires significant computation to verify (com-
parable to, or perhaps much greater than, computingf�x�). For example,x� � � and
x��x� � x� would normally be regarded as explicit constraints while a condition such
as ‘the pressure on the wing should not exceed�N�m�’, where the pressure is computed
by a fluid-flow simulation, would be regarded as an implicit constraint. The distinction
is useful because genetic operators can usually be constructed that respect explicit con-
straints whereas this is impractical for implicit constraints.

2.2 Evolutionary Approaches

When a constrained problem is tackled using an evolutionary algorithm, there are sev-
eral main approaches, with varying degrees of generality (see for example the survey
in Michalewicz, 1995b). Perhaps the simplest idea is to restrict the search to the feasi-
ble region. This can be done by rejecting infeasible solutions outright, by using greedy
decoders or repair mechanisms, or by designed specialised operators which incorporate
knowledge of the constraints. The search is thus reformulated as an unconstrained opti-
misation problem over the reduced spaceSF (the feasible region), which is illustrated
in figure 1. The diagram shows the image of the search space under the vector-valued
functionI � S �� �R����RwhereI

�

��c�� c�� f� with ci�x� measuring the degree to
whichx violates theith constraint andf�x� giving its cost (to be minimised).

Rejection of infeasible solutions is generally applicable, but is typically limited in its
practical utility, due to the low density of feasible solutions in practical problems (e.g.
densities of 1 in���� are not uncommon). In order to avoid generating and rejecting
large numbers of infeasible solutions,greedy decoders can be used, in which a problem-
specific growth function is designed. Here, the genotype does not directly encode a solu-
tion inS but rather a set of parameters which is used by the decoder to generate a feasible
solution. Because the decoder must be guaranteed to never produce infeasible solutions
(regardless of the provided parameters), it is often extremely difficult to design. More-
over, it is typically hard to generate a decoder that can be guaranteed to be capable of
generating optimal or near optimal solutions.

A related approach is to use repair mechanisms to produce feasible solutions from
infeasible ones, mappingS �� SF . (Here, genotypes directly represent solutions in
S). This requires a problem-dependent operator which is able to modify any infeasible
solution in such a way as to produce a (nearby) feasible solution. Again this is clearly
difficult for many types of constraints. When such mechanisms are employed, a further
choice is available, namely whether to write the repaired solution back to the genome,
or to use it during evaluation, but then to leave the (infeasible) genome intact. The for-
mer approach, which is known as Lamarckism, has the advantage of generally allowing
faster local improvement, but can make it harder for the search to traverse infeasible re-
gions of the search space, particularly whenSF is strongly disconnected with respect
to the genetic operators. The latter approach, (which has some parallels with the Bald-
win effect) has converse advantages and disadvantages. Davis & Orvosh (1993) present
anecdotal empirical evidence that writing the repaired solution back to the genome prob-
abilistically, about 5% of the time, is a good option, and the ideas are further explored
by Whitleyet al. (1994).
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Fig. 1. A constrained optimisation problem to minimise costf while satisfying two implicit con-
straints is illustrated. Points in the search spaceS are shown under the three-dimensional mapping
I
�

��c�� c�� f�. Thec� andc� axes measure the degree of constraint violation, so that points in the
feasible region,SF , are mapped to the line where both are zero. The desired set of optimaS

� is
the set of feasible points with minimum cost. All solutions inS are mapped to points on and above
the shaded surface.

The final suggestion is to build and use genetic operators that “understand” the con-
straints, in the sense that the syntactic actions of the operators never produce infeasible
solutions (ones that violate the constraints). This approach is advocated by Michalewicz
(1992), and Radcliffe (1994). Michalewicz & Janikow (1991) have shown how genetic
operators can be built that “understand” linear constraints in this sense, and Schoenauer
& Michalewicz (1996) construct operators which maintain solutions on nonlinear ana-
lytical constraint surfaces; however, it is clear that for many types of constraints (partic-
ularly implicit ones) this approach is impractical.

In a problem with implicit constraints, it is often at least as difficult to determine
whether a solution is feasible as to evaluate its cost. In such a case it is typically impos-
sible to utilise repair mechanisms or greedy decoders and impractical to restrict search to
simply reject infeasible solutions, and we must take an alternative, generally less attrac-
tive approach. By exploring infeasible solutions, the goal is to drive the search towards
the feasible region. Particularly in problems with many active constraints at optima, we
hope to approach optima from ‘both sides’, that is to find nearly feasible solutions with
better than optimal function values along with feasible solutions with nearly optimal
function values (indeed, this is the explicit goal of the segregated genetic algorithm of
LeRicheet al., 1995). Thus it has been stated that:

[g]oodsearch should approach the optimal from both sides of the feasible/infeasible
border (Richardsonet al., 1989).



The problem then becomes one of how to compare feasible and infeasible solutions,
since in the final analysis it is only feasible solutions which are acceptable. The most
widely applicable approach is to employ a penalty function. Here, the search is treated
as an unconstrained problem overS, but the objective function is modified for infeasi-
ble solutions by adding terms which degrade their performance. In general, the size of
penalty added reflects in some way thedegree of constraint violation (for example the
sum of the constraint violation for each constraint). It is also reasonably standard prac-
tice (e.g. Richardsonet al., 1989; Michalewicz, 1992) to increase the size of penalties
during the course of a run (reverse annealing), so that while a degree of violation is toler-
ated early in early generations, this tolerance reduces over time. This ensures that, after
sufficient time, the optimal solutions to the unconstrained problem using the modified
objective function coincide with the optimal solutions to the original constrained prob-
lem.

Althoughpenalty functionsare essentially universally applicable, they exhibit a num-
ber of drawbacks. First, they are weak, in the (formal) sense that they do not provide
any problem-specific information to the algorithm. This contrasts with repair mecha-
nisms and problem-specific move operators that exploit understanding of the constraints
to provide stronger guidance to the algorithm, but such techniques are not applicable for
general constraints. Secondly, the choice of weighting for the constraints is a somewhat
subtle matter, particularly when there are many, and increases yet further the number of
free parameters to the evolutionary algorithm. Because any choice of parameters deter-
mines a fixed form for the modified function in the infeasible region, it induces a fixed
ranking on all infeasible solutions. This limits the way in which the search algorithm can
explore the infeasible region, since fixed tradeoffs between the various constraints have
been introduced. The resulting quality of solution obtained—in fact, the likelihood of
findingany feasible solution—may be extremely sensitive to the values chosen.

In the next section, we present a method, previously discussed in the context of a spe-
cific optimisation problem (Surryet al., 1995), which avoids this difficulty by appealing
to the methods of multi-criterion optimisation. Some initial exploration has taken place
in this area. For example the work of Schoenauer & Xanthakis (1993) treats each con-
straint in turn to avoid amalgamating them. Richardsonet al. (1989) suggest the possi-
bility of using multi-objective techniques (using fitness and either the sum or the number
of constraint violations as two objectives) but claim to have been plagued by difficulties.
In fact Chu & Beasley (1995) implement a scheme similar to this to deal with a single
constraint (using what they term fitness and unfitness). However, they give no guidance
in dealing with multiple, non-commensurate constraints, other than by combining them
using what is essentially a penalty function (see section 3). The method we propose in
section 4 presents a novel solution to this problem.

3 Multi-Objective Optimisation

3.1 Formulation

In many real-world optimisation problems there is not a single objective but a set of
criteria against which a solution may be measured. Such problems are often known as



multi-objective or multi-criterion optimisation problems, and are defined by a set of ob-
jective functionsf�� f�� � � � � fN over the search spaceS, each of which should ideally
be minimised.

Perhaps the most common approach to multi-criterion optimisation is to form a new
objective functionF that is a weighted sum of the individual objectives,

F �

NX

i��

�ifi� �i � R
�

and to seek to minimise this sum.
If there exists a solutionx� � S that simultaneously succeeds in minimising each

of the fi, this approach can be reasonably satisfactory, because in this case, success-
ful optimisation ofF will also optimise eachfi. In the more general case, however, the
component objectivesfi will compete, in the sense that improvement against one will
in some cases require a degradation against another. In this case, the approach of form-
ing a weighted sum is less attractive, because the choice of weights�i will determine
the trade-off between the various component objectives that optima of the combined
functionF will exhibit. This is particularly unsatisfactory in cases where the various
objectives arenon-commensurate, in the sense that trade-offs between them are either
arbitrary or meaningless. A good example of this might arise when seeking to maximise
profit while minimising ecological damage, where most people would accept that any
assignation of economic cost to ecological damage is at best arbitrary.

In the case of multi-objective problems with competing, non-commensurate crite-
ria, a more satisfactory approach is to search not for a single solution but for that set
of solutions that represent the “best possible trade-offs.” Such solutions are said to be
Pareto-optimal, (after Vilfredo Pareto who first advanced the concept) and are charac-
terised by introducing the notion of domination. A solutionx is said todominate another
solutiony if its performance against each of the objective functions is at least as good
as that ofy, and its performance is better against at least one objective, i.e. if and only if

�i � f�� 	� � � � � ng � fi�x� � fi�y�

and � j � f�� 	� � � � � ng � fj�x� � fj�y��

Clearly in this case,x may reasonably be said to be a superior solution toy. ThePareto-
optimal set (or front)P is the set of solutions that are not dominated by any other solution
in the search space, i.e.

P
�

�
�
x � S

�� �� y � S � y dominatesx
�
�

3.2 Evolutionary Approaches

Although it is difficult to attack multi-criterion problems with traditional optimisation
methods, it is relatively natural in population-based search algorithms to consider try-
ing to use the population to hold solutions that represent different trade-offs. Reason-
ably simple modifications to the selection (and perhaps the replacement) method may
be all that is required to effect this. A number of schemes have been proposed, most



of which are based around the notion of only allowing selective advantage between so-
lutions when one dominates another. Fonseca & Fleming (1995) provide an overview
of many such techniques. The effectiveness of these methods is further enhanced when
combined with some form of niching, to encourage greater diversity in the population.
Niching methods include structured population models (e.g. Norman, 1988; Manderick
& Spiessens, 1989; Gorges-Schleuter, 1989), sharing (Goldberg & Richardson, 1987),
and crowding (Cavicchio, 1970; DeJong, 1975).

3.3 Constraint Satisfaction as Multi-Criterion Optimisation

It is clear that the constraint satisfaction problem is (formally) equivalent to the sim-
ple class of multi-objective problems (discussed above) in which all objectives can be
minimised simultaneously. We measure the degree of constraint violation for each con-
straint (or group of commensurate constraints) and treat each of these as an objective
in a multi-criterion problem. (Consider again figure 1, where we are now only required
to find a solution inSF . The dashed lines, if extended upwards as vertical manifolds,
might indicate a series of progressively dominating surfaces, convergingonI�SF �—the
Pareto-optimal set in this case.) Although, in such a case, minimising a penalty function
expressing the degree of constraint violation would be the most common approach, we
suggest that a more appropriate strategy when using evolutionary techniques is to use
the simple techniques for general multi-criterion optimisation discussed above in order
to exploit the ability of the population to hold many different possible trade-offs between
the constraints. This allows the algorithm to dynamically “discover” an appropriate tra-
jectory by which to approach the feasible region, rather than arbitrarily assigning the
relative importance of different combinations of constraint violations.

In the next section we show how this idea can then be extended to the constrained
optimisation problem, where not only must several constraints be satisfied, but a given
objective functionf must also be minimised.

4 The COMOGA Approach

4.1 Motivation

It was pointed out in section 2 that if we choose to use a penalty function with some
given set of parameters to attack a constrained optimisation problem, we make ana pri-
ori decision about the relative importance of different degrees of constraint violation,
regardless of their actual difficulty to satisfy. Further, by combining the degree of con-
straint violation with the objective function value we impose fixed choice concerning
the tradeoff between constraint satisfaction and optimisation.

In section 3, we showed that the methods of evolutionary multi-objective optimisa-
tion can be applied directly to the constraint satisfaction problem, and proposed that we
could apply similar ideas to constrained optimisation. Obviously, the situation is com-
plicated somewhat by the additional requirement of minimising some function over the
feasible region. Here we think off as an extra criterion which is of less importance than
any of the “constraint criteria”, i.e. there is no acceptable trade-off between minimising
(satisfying) the constraints, and minimisingf .



The approach we advocate is to view a constrained optimisation problem alterna-
tively as a constraint satisfaction problem (ignoring the objective function) and as an un-
constrained optimisation problem (ignoring the constraints). We then propose to decide
adaptively which view to take at any instant based on the relative success with respect to
the two formulations. In order to find near-optimal solutions, we must be careful to get
neither “too far” from feasibility nor “too far” from optimal fitness, while also recog-
nising that constraint satisfaction is more important than optimisation (as ultimately we
are only interested in feasible solutions). We show that an adaptive population-based al-
gorithm is ideal for this purpose.

There are numerous approaches to unconstrained optimisation using a population-
based algorithm,and various techniques for constraint-satisfactionbased on multi-criterion
evolutionary algorithms have been discussed above. The difference between these two
types of algorithms can typically be ascribed solely to the selection (and replacement)
regime—in the first case selective decisions are based on fitness (cost) while in the sec-
ond they are normally based on some form of Pareto ranking.

This motivates an attractively simple scheme for coupling the combined constrained
optimisation problem, in which we use a single algorithm but randomly decide each time
a selective decision must be made whether to consider the problem as a constraint sat-
isfaction problem or as an unconstrained optimisation problem. We then adjust the rel-
ative likelihood of adopting each view using a simple feedback mechanism that tries to
maintain a fixed fraction of the population in the feasible region. Because individual so-
lutions can be selected on the basis of either constraint satisfaction or cost, this results in
an algorithm which aims to dynamically explore the boundary between feasibility and
infeasibility without arbitrary penalty factors fixing the relative quality of the different
achievable tradeoffs.

This can be seen as a generalisation of the scheme recently proposed by Chu & Beasley
(1995) which can importantly handle more than one constraint without having to amal-
gamate them.

4.2 Algorithm

To treat the constraint satisfaction aspect of the problem, we can conceptually label all
members of the search spaceS with some measure of their Pareto ranking based on con-
straint violation, either by conceptually peeling off successive non-dominating layers
(Goldberg, 1989), or by assigning to each solution a “rank” equal to the number of so-
lutions which dominate it (Fonseca & Fleming, 1993). (The latter scheme has the ad-
vantage that it is easy to subtract the effect of a deleted individual and add the effect of
a new individual without re-ranking the entire population.) Note that this ranking is a
dynamic one, based on the current population of achievable constraint tradeoffs rather
than a fixed ranking of any possible combination of constraint violations. We denote this
population-dependent ranking functionR � �R��N �� Z

�, whereN is the number of
constraints.

From the unconstrained optimisation view, every solution has some cost value as-
sociated with it. Thus we are presented with a dual view of each solution in the popula-
tion and can form the two-dimensional mappingIR � S �� Z

� � R, with IR
�

��R �
�c�� � � � � cN �� f�. This reduces the problem to the two-objective problem illustrated in



figure 2. We must couple the two viewpoints in order to solve the combined constrained
optimisation problem: in solving the constraint satisfaction problem we minimize along
theR axis and in solving the unconstrained optimisation problem we minimize along
thef axis. However, we desire not simply solutions on the Pareto-optimal surfaceP ,
but rather solutions in the intersection of the Pareto-optimal set with the feasible region
(as constraint satisfaction is “more important” than cost minimisation).

IR�S
��

�

P

IR�SF �

IR�S�

R

f

Fig. 2. The constrained optimisation problem withN constraints can be re-cast as a two-objective
problem by assigning a Pareto rank based on constraint violation. The Pareto-optimal setP is the
set of non-dominated solutions underIR

�

��R � �c�� � � � � cN �� f�. The feasible set is mapped to
the line segmentIR�SF �, and the desired set of optima is mapped to their intersection,IR�S

��.
The search spaceS is mapped to points on and aboveP.

One possible approach is to use a sub-ranking scheme, where only solutions with
equal Pareto rank for constraints are distinguished on the basis of cost. However, this
is likely to result in an evolutionary process which first concentrates on the constraint
satisfaction problem (hence sampling points in the feasible region essentially at random)
and only once this is solved tries to reduce cost. This “approach from above” not only
lacks the desirable property of being able to combine low-cost, nearly-feasible solutions
with higher-cost feasible ones, but may be an extremely poor way to searchSF if it is a
highly sparse and disconnected subset ofS.

An appealing alternative approach is to enlist the ideas of Schaffer (1985). In his
vector evaluated genetic algorithm (VEGA), he selects some fraction (typically��k)
of the population based on each of thek objective functions. When a fixed fraction is
used for each objective (e.g.��k), this tends to favour the development of “specialist”
populations that excel in one objective function, particularly when fitness-proportionate



selection is used (Richardsonet al., 1989). However, COMOGA will actively exploit
this tendency by adaptively changing the likelihood of selecting with respect to each
objective.

The suggestion in our case is to use, for example, tournament selection (Goldberg,
1989), sometimes basing the tournament on costf and sometimes on the Pareto ranking
R with respect to constraint violation. (In cases where the selected attributes are equal,
the other attribute is compared.) A probabilitypcost is used to determine the likelihood
of selection with respect to cost, and will be adapted as the algorithm progresses. Any
fixed value ofpcost will induce an overall probability of reproduction equal to some lin-
ear combination of the reproductive probabilities with respect to the two attributes, with
population-dependent weights. Although such a fixedpcost may favour convergence to
some non-feasible point on the Pareto-optimal curve, it is clear that aspcost � �, the
process increasingly favours constraint rank until in the limit ofpcost � � we are essen-
tially solving the constraint-satisfaction problem; seeking feasible solutions regardless
of cost (unless the constraint rankings are equal—this is equivalent to the sub-ranking
approach described above). We thus hope that some intermediate non-zero value will
allow us to find feasible solutions of low cost. This is illustrated in figure 3.

High pcost

Low pcost

R

f

�

Fig. 3. Using a VEGA-like scheme of selecting probabilistically with respect to one of the two
objectives (cost or constraint rank), we induce a perceived fitness of some population-dependent
weighted combination of the two objectives. Aspcost tends to zero, the scheme favours constraint
rank more, and cost less. By adaptively changingpcost based on the proportion of feasible solu-
tions observed in the population, the algorithm dynamically discovers how to achieve constraint
satisfaction and minimisation simultaneously.



To avoid the problem of fixing a particular value forpcost, we propose to change
the value adaptively by setting a target proportion� of feasible solutions in the popula-
tion. (� is similar to the flip threshold of Schoenauer & Xanthakis, 1993.) We start by
choosing some arbitrary value forpcost, say��
, and some desired proportion of feasible
solutions, e.g.� � ���. After each generation, if the number of feasible solutions in the
population is not close to� , then we adjustpcost up or down accordingly: if the actual
proportion is too low, we decreasepcost, e.g.

pcost 	 ��� ��pcost� (1)

and conversely, if the proportion is too high, we increase it, e.g.

pcost 	 �� ��� pcost���� ��� (2)

This does, of course, introduce several new parameters to the algorithm (though notably
fewer than a penalty function), which we were trying to avoid, but we find in practice
that the scheme is remarkably robust to them, in contrast to the sensitivity of penalty
function parameters. This leads to the COMOGA method, which is summarised below.

The COMOGA Method

1. Calculate constraint violations�c�� � � � � cN � for all solutions.
2. Pareto rank based on constraint violations (e.g. by counting the number of

members of the population dominated by each solution).
3. Evaluate the cost (fitness) of solutions.
4. Select an (expected) proportionpcost of parents based on cost, and the oth-

ers based on constraint ranking.
5. Apply the genetic move operators (recombination, mutation etc.)
6. Replace an (expected) proportionpcost of solutions based on cost, and the

others based on constraint ranking.
7. Adjustpcost if the proportion of feasible solutions in the population is not

close to the target proportion,� , according to equations (1) and (2). Low-
eringpcost favours feasible solutions and raising it favours lower cost so-
lutions.

Typical values for the parameters are� � ��� and� � ���, with pcost � ��
 initially.

4.3 Discussion

The COMOGA scheme has several attractive features. First, and foremost, it removes
the necessity for the many parameters of a penalty function which must be determined
empirically. Secondly, it turns the acknowledged weaknesses of VEGA to favour ex-
treme solutions to advantage, as in this case we are only ultimately interested in solutions
which excel at constraint satisfaction (have low constraint rank). Thirdly, the adaptive
approach to specifyingpcost allows the algorithm to find its own trajectory to approach
the desired optimal values.

In practice, it is important to incorporate explicit constraints (e.g. linear or other spe-
cific nonlinear ones) where possible, and to amalgamate multiple commensurate con-
straints in order to reduce the dimensionality of the Pareto-optimal front. It may also



be advantageous to incorporate niching or other diversity promoting measures in the al-
gorithm (in the work presented here we have simply enforced uniqueness which is not
likely to be highly effective for real parameter optimisation).

5 An Illustrative Application

We will illustrate the application of the COMOGA approach to a gas-network pipe-sizing
problem, contrasting the results with a penalty-function approach. This work has been
previously reported in greater detail (Surryet al., 1995).

The problem involves determining the diameters of pipes in a fixed-topology net-
work (with fixed supplies and demands), in order to minimise expenditure, while sat-
isfying two implicit constraints defining the minimal pressure at each node along with
an engineering requirement that each pipe should have at least one upstream pipe of the
same or greater diameter.

In the particular problem considered, the network contained 25 pipes, each of which
could be selected from six possible sizes, giving rise to a search space of size��� 

������. The network is a real one, which was actually built, with pipe sizes determined
using a greedy heuristic method. (Both evolutionary methods outperformed the existing
greedy heuristic for the problem, giving identical results.) The density of valid networks
(ones which satisfy the constraints) in the search space is extremely low—random sam-
pling of more than�� ��	 points produced only a single admissible configuration.

Because of the implicit nature of the constraints in the pipe-sizing problem, the only
applicable conventional approach is to use a penalty function, as it would be extremely
difficult to construct genetic operators that respected them, and prohibitively expensive
to use a repair mechanism (if indeed one could be constructed). In order to compare this
approach with the COMOGA technique of modifying the selection regime, a standard
steady-state elitist duplicate-free evolutionary algorithm using an integer-valued repre-
sentation and standard recombination and mutation operators was employed (Surryet
al., 1995). Binary tournament selection with parameter 1.0 was used to select parents,
and the resulting child was re-inserted using a replace-worst scheme. Tournament re-
placement was also investigated, but the more aggressive replace-worst strategy proved
superior.

In the first case, an annealed penalty function which combined a time-dependent
weighted sum of the degree of constraint violation for the two constraints along with the
basic cost function value was used as the objective. This involved six control parameters
to incorporate the two constraints. A wide range of penalty function parameters were
tested to discover the typical relative values of constraint violations, etc. As has been
widely reported previously, the quality of the resulting algorithms is highly sensitive to
these values, with small changes often resulting in runs in which no feasible solution
was found.

The technique (with good parameters) produced consistently good results, although
it did not always converge to the same optimal solution. In most cases it found networks
which were better, often significantly so, than that determined by the heuristic approach.
In almost all cases the algorithm found a valid network by the end of the run (i.e. one



in which the penalty terms were zero). A snapshot of a single successful run using the
penalty function is discussed in figure 4.

The same algorithm was then adapted to COMOGA approach, as described in sec-
tion 4. Each member of the initial population was assigned a rank according to constraint
violation by counting the number of members in the population by which it was domi-
nated. The same selection and replacement regime was used, but with decisions based
on cost value with probabilitypcost, and otherwise on constraint ranking.

As with the penalty function approach, a variety of population sizes, mutation and
crossover rates, and so forth were investigated. Results were best with populations of
about 100 individuals, and with the same stopping conditions, runs lasted for similar
numbers of evaluations, and producedsimilar quality solutions (the same “best” solution
from the penalty-function approach was found consistently). In contrast to the penalty-
function approach however, algorithm performance was much less sensitive to these
control parameters. Most importantly, the COMOGA scheme was not particularly sen-
sitive to the method used for adapting thepcost parameter, nor to the target proportion
of feasible solutions,� . A sample run of the COMOGA algorithm is discussed in figure
5.

Although the overall performance of the COMOGA algorithm was very similar to
that of the best penalty function approach found, both in terms of computational effort
required and frequency of finding the best solutions. However, significantly less exper-
imentation was required to find values for COMOGA’s parameters that work well than
was the case with the penalty function method.

6 Experimental Results

In order to validate the COMOGA method it has been applied to a series of known test
problems in constrained optimisation for which other evolutionary methods have been
applied. The first such problem is the so-called “bump problem” of Keane (1996b), a
highly multi-modal maximisation problem defined for an arbitrary number of variables,
n, and two non-linear constraints, with an unknown optimum value. For comparative
purposes, we studied the problem withn � 
�. Using an untuned implementation of the
COMOGA method, we achieved results superior to any generic evolutionary algorithm
previously studied, with fitnesses in the range 0.814 to 0.828 after 200 000 evaluations.
Keane (1996a) reports that the best result known to him is 0.832, produced by a non-
genetic technique, but more recently Michalewicz & Schoenauer (1996) have achieved
0.833 with a population of size of 30 over 30 000 generations using a problem-specific
crossover operator to search the constraint surface, and in this volume Wodrich & Bilchev
(1997) report results of 0.826 after only 30 000 evaluations, also employing a problem-
specific heuristic.

Michalewicz (1995a) has proposed a test set consisting of five constrained optimi-
sation problems, for which he has compared six existing evolutionary techniques. This
test set was coded as a library for theReproductive Plan Language, RPL2 (Surry & Rad-
cliffe, 1994, Radcliffe & Surry, 1994), and an untuned implementation of COMOGA
was applied to the problems. Table 1 summarises the results of these experiments in the
same form presented by Michalewicz (based on the same number of total evaluations per
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Fig. 4. The figure shows the pattern of convergence for a single run of an algorithm based
on a penalty function. A snapshot of the population is shown every five generations, plot-
ted with respect to the degree of violation of the two constraints and to unpenalised cost
(to be minimised). An enlarged section of the region near zero constraint violation is also
shown, along with curves which show lines of equal penalty when constraint violations
are incorporated with the cost. Note that the population approaches the minimum by first
satisfying the constraints and then minimising in the feasible region.
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Fig. 5. The figure shows the pattern of convergence for a single run of the COMOGA
method. The population is shown every five generations with respect to the two con-
straints and the cost. In contrast to the penalty function run, the population explores a
variety of tradeoffs between constraint satisfaction and cost, approaches the feasible so-
lutions with minimal cost from both above and below.



run). Here all runs resulted in feasible solutions so Michalewicz’s summary by degree
of violation has been dropped.

Best/Median/Worst
Case Form Vars LI NI EqOptimum Previous COMOGA Rank

1 quadratic 13 9 – – –15.000 #4 –15.000 –14.997 5=
–15.000 –14.996
–15.000 –14.994

2 linear 8 3 3 – 7049.331 #4 7377.976 7081.43 1
8206.151 7556.85
9652.901 8322.51

3 polynomial 7 – 4 – 680.630 #4 680.642 680.663 1=
680.718 680.690
680.955 680.755

4 nonlinear 5 – – 3 0.054 #4 0.054 0.058 3
0.064 0.205
0.557 0.570

5 quadratic 10 3 5 – 24.306 #2 25.486 24.340 1
26.905 24.509
42.358 24.710

Table 1. The table shows the results of applying the COMOGA method to the test set of
Michalewicz (1995a), in which he compared six evolutionary constraint handling meth-
ods. The form, number of variables and number and types of constraints (linear inequal-
ities, LI, non-linear inequalities, NI, and non-linear equalities, Eq) are shown for each
test problem, along with the optimal value. Results from a set of ten runs are shown for
both the previous best method and the COMOGA method, along with the overall ranking
on minimum, median and maximum for this new scheme (where this is ambiguous a tie
has been awarded). COMOGA performs well on most of the problems, and was the only
method to produce a feasible solution in every run for every problem. It performs worst
with the linear constraints of problem 1, though this is essentially only a failure to suffi-
ciently polish the parameter values. In problem 4 the equality constraints are treated by
essentially converting them to inequality constraints specifying an allowable violation
of the equality (a tolerance of 0.001 was used, as this defined feasibility in Michalewicz’s
study). This creates an artificial division between the feasible and infeasible region.

For problem #1, it has failed only to accomplish the final ‘polishing’ having achieved
4+ figure accuracy in all of the parameter values for every run. This is more suggestive
of shortcomings in the genetic operators used (e.g. perhaps the mutation rate or loss of
diversity) rather than a failure in the COMOGA technique itself. Note also that no op-
erators which ‘understood’ these linear constraints were used for the purposes of this
initial comparison.



For problem #4, by treating the equality constraints as hard inequality constraints
(using the arbitrary 0.001 factor for allowable degree of violation) we create a sharp ar-
tificial boundary between the feasible and infeasible regions. Since this region is essen-
tially a two-dimensional subspace of the five-parameter domain it is perhaps not sur-
prising that it is difficult to “explore” it effectively. In fact, we typically observe that the
trajectory of the initial population to find the first feasible solution has a large impact on
the quality of the best feasible solution found. This suggests that perhaps this is not the
best way in which to incorporate equality constraints within the COMOGA framework,
but this requires further investigation.

7 Summary

A new approach of general applicability to constrained optimisation—the COMOGA
method—has been presented. This technique treats a constrained optimisation problem
sometimes as a constraint satisfaction problem and sometimes an unconstrained optimi-
sation problem, using a single population, by switching between selection regimes. A
simple feedback mechanism is used to determine the (expected) proportion of selective
decisions which are made with respect to the two viewpoints, depending on the relative
progress observed on each.

The COMOGA method uses the memory implicit in the population to “discover for
itself” the relative utility of different achievable combinations of constraints and objec-
tive function value. The population thus forms not just a pool of good solutions among
which recombination takes place, but a context in which to determine the fitness of any
one member—the effective weighting of the various constraints is determined by the
population, as is the relative weighting of constraint satisfaction and cost minimisation.
This contrasts with a penalty function approach, where both are determineda priori, and
appears to carry the significant benefit of reducing both the sensitivity of the genetic al-
gorithm to the values of the free parameters, and the number of those parameters.

A series of experiments have validated the COMOGA approach, based on the sim-
ple yet powerful idea that by merely alternating between two selection (and replacement)
regimes we can couple solution of the constraint satisfaction problem to the simultane-
ous solution of the unconstrained optimisation problem, and discover good solutions to
the constrained optimisation problem. Because the scheme is based only on modifying
the selection regime, it is possible to use whatever representation, genetic operators and
update strategy is appropriate for a given problem within the COMOGA framework.
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