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Abstract. This paper presents a new technique for handling constraints within
evolutionary algorithms, and demonstrates its effectiveness on a real-world, con-
strained optimisation problem that arises in the design of gas-supply networks.
The technique, which we call the COMOGA method (Constrained Optimisation
by Multi-Objective Genetic Algorithms), borrows two crucial ideas from multi-
objective optimisation and combines them with an adaptive genetic algorithm to
yield a method with the same wide applicability as penalty function methods, but
with significantly fewer free control parameters and the potential for greater ef-
fectiveness.

Initial results reported in this paper first compare the heuristic previously used
in practice by British Gas with a genetic approach using a carefully tuned penalty
function. On the problem instance studied, the genetic algorithm was able to find
a feasible network with a cash cost 4% lower than the previously best-known (and
installed) solution. Though successful, the penalty function method suffered from
the familiar sensitivity to the settings of the parameters controlling the effective
weighting of the constraint functions, and required a reverse annealing schedule
to encourage feasible solutions to emerge over time.

The exercise was repeated using the COMOGA method, which treats each of
the constraints—explicit or implicit—as a separate criterion in a multi-objective
formulation of the problem. The same 4% improvement over the heuristic was
achieved with COMOGA, in similar numbers of evaluations and with similar con-
sistency, but with significantly less tuning. This was because of the greatly reduced
number of free parameters for which values need to be selected with this method,
as well as the algorithm’s lower observed sensitivity to these values.

1 Introduction

It is a frequent criticism of evolutionary algorithms that published results are usually ob-
tained with contrived problems without constraints, leading to the suggestion that evolu-
tionary methods are unsuitable for tackling complex constrained optimisation problems.
Within the community, there is a wide-spread perception that penalty function methods
are a rather blunt instrument for handling general constraints (e.g. Michalewicz, 1992),
exhibiting great sensitivity to the values of their many free parameters, and feeding rather



too little information back to the algorithm to allow it to handle the constraints satisfac-
torily. While other methods are available for problems with explicit constraints (includ-
ing repair methods, smart decoders and special operators incorporating problem knowl-
edge), these do not have fully general applicability, and tend to require significant work
for each new class of problems tackled. On this basis, there is an urgentneed for a method
that combines the generality of penalty function approaches with a greater feedback of
information to the underlying search algorithm about the way in which progress is being
made with the various constraints under consideration.

This study first applied a relatively straightforward genetic algorithm with a tuned
penalty function to a real constrained pipe-sizing problem previously solved by British
Gas. The genetic algorithm was found to produce significantly better solutions than the
standard heuristics used by the company to plan the installed network, giving rise to ac-
tual cost reductions of about 4%. The COMOGA method for constraint handling (Con-
strained Optimisation by Multi-Objective Genetic Algorithms) was then developed.This
combines two techniques previously applied in the context of multi-criterion optimisa-
tion with an adaptive selection scheme. COMOGA is shown to give similar results to
those obtained using the tuned penalty function, (also beating the British Gas heuristic
by 4%) but with significantly fewer free parameters and consequent experimentation.

The particular problem studied in this work is described in section 2, where the im-
portanceof constraints in the applicationis stressed. Section 3 goes on to give an overview
of current approaches to constrained optimisation. Connections with multi-objective op-
timisation are made in section 4, and these ideas are then cast in the context of the pipe-
sizing problem in section 5. The results obtained are outlined in section 6, and the main
ideas are summarised in section 7.

2 Problem Specification

The design of a gas network—for example, to supply a new housing development—
involves defining the layout of the network and, having done this, choosing the types of
pipe to be laid. The layout is generally determined by such considerations as the routes of
roads but the selection of the pipe types is tackled as a constrained optimisation problem.
The important constraints on any design are that:

– the pipes selected should allow the customer demands to be met at or above a “min-
imum design pressure”;

– each pipe (other than those incident to a source) should have at least one upstream
pipe of the same or greater diameter.

Pipes are produced in a range of discrete diameters and in a number of materials, and
for a given material the cost per unit length of pipe is an increasing function of diame-
ter. The pressure drop along a pipe, for a fixed flow, is a decreasing function of diameter
so larger diameters will generally give a more secure network. The problem in design-
ing a network is therefore to select the diameters of pipes in such a way that they are
large enough to provide security of supply but not larger than they need to be. The lat-
ter would amount to an over-design of the network, in that a cheaper design would have
been adequate.



The cost of a network is thus the sum of the costs of the pipes it contains. However, in
seeking an optimal network, the two constraints must be considered. Both the upstream
pipe constraint and the minimum pressure constraint are implicit, i.e. their satisfaction
can only be verified by solving the non-linear gas flow equations for the network. This is
because it is only by solving the equations (or building the network!) that the upstream
directions and pressures within the pipeline can be determined.

In the particular problem considered, the network contained 25 pipes, each of which
could be selected from six possible sizes, giving rise to a search space of size��� �
� � ����. The pipes connect 25 nodes, 23 of which are (varying) demand nodes and
two of which are pressure-defined source nodes. (Flow-defined source nodes may also
be specified.) The network is a real one, which was actually built, with pipe sizes deter-
mined using the heuristic method discussed in section 6.2.

The density of valid networks (ones which satisfy the constraints) in the search space
is extremely low—random sampling of more than����� points produced only a single
admissible configuration.

3 Constrained Optimisation

Many other optimisation problems can also be phrased as

Minimise (maximise)
f � S �� R

subject to [the solution x � S satisfying certain equalities or inequalities].

The equations or inequalities that the solutionx must satisfy are known as constraints.
Indeed, in some applications, the objective functionf is discarded with the goal being
simply to find some solution that satisfies the set of constraints (so-called constraint sat-
isfaction problems).

The constraints onx are conveniently divided into two categories—implicit and ex-
plicit. Explicit constraints are those which can be reduced to simple, explicit conditions
onx, while implicit constraints are those which specify a condition on some (possibly
complex) function ofx.

When a constrained problem is tackled using an evolutionary algorithm, three main
approaches are available. The first is to build and use genetic operators that “understand”
the constraints, in the sense that they never produce infeasible solutions (ones that vio-
late the constraints). These are often calledgreedy decoders. The search is thus reformu-
lated as an unconstrained optimisation problem over the reduced spaceSf (thefeasible
region), which is illustrated in figure 1. The diagram shows the image of the search space
under the vector-valued functionI � S �� �R����RwhereI

�

��c�� c�� f� with ci�x�
measuring the degree to whichx violates theith constraint andf�x� giving its cost (to be
minimised). This approach is advocated by Michalewicz (1992), and Radcliffe (1994).
Michalewicz has shown how genetic operators can be built that “understand” linear con-
straints in this sense.

A second approach is to use repair mechanisms to produce feasible solutions from in-
feasible ones (mappingSnSf �� Sf ). When such mechanisms are employed, a further
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Fig. 1. A constrained optimisation problem to minimise costf while satisfying two implicit con-
straints is illustrated. Points in the search spaceS are shown under the three-dimensional mapping
I
�

��c�� c�� f�. Thec� andc� axes measure the degree of constraint violation, so that points in the
feasible region,Sf , are mapped to the line where both are zero. The desired set of optimaS

� is the
set of feasible points with minimum cost. All solutions inS are mapped to points on and above
the shaded surface.

choice is available, namely whether to write the repaired solution back to the genome,
or to use it during evaluation, but then to leave the (infeasible) genome intact. The for-
mer approach, which is known as Lamarckism, has the advantage of generally allowing
faster local improvement, but can make it harder for the search to traverse infeasible re-
gions of the search space, particularly whenSf is strongly disconnected with respect
to the genetic operators. The latter approach, (which has some parallels with the Bald-
win effect) has converse advantages and disadvantages. Davis & Orvosh (1993) present
anecdotal empirical evidence that writing the repaired solution back to the genome prob-
abilistically, about 5% of the time, is the best option.

In a problem with implicit constraints, it is often at least as difficult to determine
whether a solution is feasible as to evaluate its cost. In such a case, neither of these first
two techniques is likely to be appropriate. The final approach, which is generally ac-
cepted to be the least attractive, but most universally applicable, is to employ a penalty
function. Here, the search is treated as an unconstrained problem overS, but the objec-
tive function is modified for infeasible solutions by adding terms which degrade their
performance. In general, the size of penalty added reflects in some way thedegree of
constraint violation. It is also reasonably standard practice (e.g. Richardsonet al., 1989;
Michalewicz, 1992) to increase the size of penalties during the course of a run (reverse
annealing), so that while a degree of violation is tolerated early in early generations, this
toleration reduces over time. This ensures that, after sufficient time, the optimal solu-



tions to the unconstrained problem using the modified objective function coincide with
the optimal solutions to the original constrained problem.

Although penalty functions are more-or-less universally applicable, they exhibit a
number of drawbacks. First, they are weak, in the (formal) sense that they do not provide
any problem-specific information to the algorithm. This contrasts with repair mecha-
nisms and problem-specific move operators that exploit understanding of the constraints
to provide stronger guidance to the algorithm, but such techniques are not applicable
for general constraints. Secondly, the choice of weighting for the constraints is a some-
what subtle matter, particularly when there are many, and increases yet further the num-
ber of free parameters to the evolutionary algorithm. The resulting quality of solution
obtained—in fact, the likelihood of findingany feasible solution—may be extremely
sensitive to the values chosen. In the next section, we propose a method which avoids
this difficulty, by appealing to the methods of multi-criterion optimisation.

4 Links to Multi-Criterion Optimisation

In many real-world optimisation problems there is not a single objective but a set of
criteria against which a solution may be measured. Such problems are often known as
multi-objective or multi-criterion optimisation problems, and are defined by a set of ob-
jective functionsf�� f�� � � � � fN over the search spaceS, each of which should ideally
be minimised (maximised).

Perhaps the most common approach to multi-criterion optimisation is to form a new
objective functionF that is a weighted sum of the individual objectives,

F �

NX

i��

�ifi� �i � R
�

and to seek to minimise this sum.
If there exists a solutionx� � S that simultaneously succeeds in minimising each

of the fi, this approach can be reasonably satisfactory, because in this case, success-
ful optimisation ofF will also optimise eachfi. In the more general case, however, the
component objectivesfi will compete, in the sense that improvement against one will
in some cases require a degradation against another. In this case, the approach of form-
ing a weighted sum is less attractive, because the choice of weights�i will determine
the trade-off between the various component objectives that optima of the combined
functionF will exhibit. This is particularly unsatisfactory in cases where the various
objectives arenon-commensurate, in the sense that trade-offs between them are either
arbitrary or meaningless. A good example of this might arise when seeking to maximise
profit while minimising ecological damage, where most people would accept that any
assignation of economic cost to ecological damage is at best arbitrary.

In the case of multi-objective problems with competing, non-commensurate crite-
ria, a more satisfactory approach is to search not for a single solution but for that set
of solutions that represent the “best possible trade-offs.” Such solutions are said to be
pareto-optimal, (after Vilfredo Pareto who first advanced the concept) and are charac-
terised by introducing the notion of domination. A solutionx is said todominate another



solutiony if its performance against each of the objective functions is at least as good
as that ofy, and its performance is better against at least one objective, i.e. if and only if

�i � f�� 	� � � � � ng � fi�x� � fi�y�

and � j � f�� 	� � � � � ng � fj�x� � fj�y��

Clearly in this case,x may reasonably be said to be a superior solution toy. Thepareto-
optimal set (or front)P is the set of solutions that are not dominated by any other solution
in the search space, i.e.

P
�

�
�
x � S

�� �� y � S � y dominatesx
�
�

It is natural in population-based search algorithms such as those normally used in
evolutionary computing to consider trying to use the population to hold solutions that
represent different trade-offs. Relatively simple modifications to the selection (and per-
haps the replacement) method may be all that is required to effect this. A number of
schemes have been proposed, most of which are based around the notion of only al-
lowing selective advantage between solutions when one dominates another. Fonseca &
Fleming (1994) providean overview of many such techniques.The effectiveness of these
methods is further enhanced when combined with some form of niching, to encourage
greater diversity in the population. Niching methods include structured population mod-
els (e.g. Norman, 1988,Gorges-Schleuter, 1989, Manderick & Spiessens, 1989), shar-
ing (Goldberg & Richardson, 1987), and crowding (Cavicchio, 1970; DeJong (1975)).

It is clear that the constraint satisfaction problem is equivalent to the simple class
of multi-objective problems discussed above, in which all objectives can be minimised
simultaneously. (Consider again figure 1, where we are now only required to find a solu-
tion inSf . The dotted lines, if extended upwards as vertical manifolds, might indicate a
series of progressively dominating surfaces, converging onI�Sf �—the pareto-optimal
set in this case.) Although, in such a case, minimising a penalty function expressing the
degree of constraint violation would be the most common approach, we suggest that a
more appropriate strategy when using evolutionary techniques is to exploit the ability
of the population to hold many different possible trade-offs, along with the simple tech-
niques for general multi-criterion optimisation discussed above, to let the algorithm dy-
namically “discover” an appropriate trajectory by which to approach the feasible region.

This idea can then be extended to the constrained optimisation problem, where not
only must several constraints be satisfied, but a given objective functionf must also be
minimised. Here we think off as an extra criterion which is of lesser importance than
any of the “constraint criteria”, i.e. there is no acceptable trade-off between minimising
(satisfying) the constraints, and minimisingf . This motivates the COMOGA approach,
which is introduced in section 5.2.

5 Approaches to the Pipe-sizing Problem

The pipe-sizing problem introduced in section 2 is a typical example of the constrained
optimisation problem discussed in section 3. Here we have a simple objective function



(the cost of the pipes in the network), and two implicit constraints which must be satis-
fied. We will first look at the conventional penalty function approach, in section 5.1, and
then at the COMOGA approach, which is motivated by the ideas from multi-criterion
optimisation discussed above.

5.1 Penalty Function

Because of the implicit nature of the constraints in the pipe-sizing problem, the only
applicable conventional approach is to use a penalty function, as it would be extremely
difficult to construct genetic operators that respected them, and prohibitively expensive
to use a repair mechanism.

The form of the modified objective function used (as suggested by work such as
Richardsonet al., 1989; Michalewicz, 1992) was

cost�Dj� �

NpipX

j��

lj 	 c�Dj� 
 �nk�gen 	 �pdes � pmin�
k� 
 �nk�gen 	

X

j

�Dj �Dk�
k�

where the first term is the cost of the pipes as a function of their diameters and (fixed)
lengths, the second term is the minimum pressure constraint (penalising networks with
pressures less than some specified design value), and the final term is the upstream pipe
constraint with summation over pipesj where there is no upstream pipe of greater or
equal diameter andDk is the diameter of the largest upstream pipe from pipej. Note
that this involves no fewer than six control parameters (the fourki, �, and�) for two
constraints.

Values were selected for the constants� and� that normalised nominal values of
the penalties to the same scale as the basic cost of the network. The various exponents
were selected in order to make the penalties grow at roughly the same rate as networks
became “worse” at satisfying the constraints (values ofk� � ��� andk� � ��� were
used). The annealing parametersk� andk	 were subject to some experimentation, but
0.2 was found to be an effective value for both.

5.2 The COMOGA Approach

In section 4, we suggested that the methods of evolutionary multi-objective optimisation
can be applied directly to the constraint satisfaction problem. However, the situation is
complicated somewhat by the additional requirement of minimising some function over
the feasible region.

We can conceptually label all members of the search spaceS with some measure
of their pareto ranking based on constraint violation, either by conceptually peeling off
successive non-dominating layers (Goldberg, 1989), or by assigning to each solution a
“rank” equal to the number of solutions which dominate it (Fonseca & Fleming, 1993).
In practice, we must be satisfied with calculating rankings based on the current popu-
lation of solutions, rather than the full search space, but the principle is the same. We
denote this ranking functionR � �R��N �� Z

�, whereN is the number of con-
straints. Since every solution has some cost value associated with it, we can form the



two-dimensional mappingIR � S �� Z
��R, with IR

�

��R 
 �c�� ���� cN �� f�, leaving
us with the two-objective problem illustrated in figure 2. However, we desire not simply
solutions on the pareto-optimal surfaceP , but rather solutions in the intersection of the
pareto-optimalset with the feasible region (as constraint satisfaction is “more important”
than cost minimisation, assuming that the constraints are not “soft”).

IR�S
��

�

P

IR�Sf �

IR�S�

R

f

Fig. 2. The constrained optimisation problem withN constraints can be re-cast as a two-objective
problem by assigning a pareto rank based on constraint violation. The pareto-optimal setP is the
set of non-dominated solutions underIR

�

��R� �c�� ���� cN �� f�. The feasible set is mapped to the
line segmentIR�Sf�, and the desired set of optima is mapped to their intersection,IR�S

��. The
search spaceS is mapped to points on and aboveP.

One possible approach is to use a sub-ranking scheme, where only solutions with
equal pareto rank for constraints are distinguished on the basis of cost. However, this
seems likely to result in an evolutionary process which first concentrates on the con-
straint satisfaction problem (hence sampling points in the feasible region essentially at
random) and only once this is solved tries to reduce cost. This “approach from above”
not only lacks the desirable property of being able to combine low-cost, nearly-feasible
solutions with higher-cost feasible ones, but may be an extremely poor way to searchSf
if it is a highly sparse and disconnected subset ofS.

An appealing alternative approach is to enlist the ideas of Schaffer (1985). In his
vector evaluated genetic algorithm (VEGA), he selects��N of the population based on
each of theN objective functions. Although his use of proportional selection is criti-
cised for its tendency to favour the development of “specialist” populations that excel
in one objective function (Richardsonet al., 1989), use of rank-based (or equivalently
tournament) selection may help to alleviate this (Fonseca & Fleming, 1994).



The suggestion in our case is to use binary tournament selection (Goldberg, 1989),
choosing, with probabilitypcost, costf as the tournament criterion, while using the con-
straint rankingsR of the solutions the remainder of the time. In cases where the selected
attributes are equal, the other attribute is compared. Any fixed value ofpcost will induce
an overall probability of reproduction equal to some linear combination of the reproduc-
tive probabilities with respect to the two attributes, withpopulation-dependent weights
(Fonseca & Fleming, 1994). Although such a fixedpcost may favour convergence to
some non-feasible point on the pareto-optimal curve, it is clear that aspcost � �, the
process increasingly favours constraint rank until in the limit ofpcost � � we are essen-
tially solving the constraint-satisfaction problem; seeking feasible solutions regardless
of cost (unless the constraint rankings are equal—this is equivalent to the sub-ranking
approach described above). We thus hope that some intermediate non-zero value will
allow us to find feasible solutions of low cost. This is illustrated in figure 3.

High pcost

Low pcost

R

f

�

Fig. 3. Using a VEGA-like scheme of selecting probabilistically with respect to one of the two
objectives (cost or constraint rank), we induce a perceived fitness of some population-dependent
weighted combination of the objective values. Aspcost tends to zero, the scheme favours con-
straint rank more, and cost less.

To avoid the problem of fixing a particular value forpcost, we propose to change the
value adaptively by setting a target proportion� of feasible solutions in the population.
(� is similar to the flip threshold of Schoenauer & Xanthakis, 1993.) We start by choos-
ing some arbitrary value forpcost, say���, and some desired proportion of feasible solu-
tions, e.g.� � ���. After each generation, if some moving average over the last several



generations of the number of feasible solutions in the population is not close to� , and if
the trend in the average is not towards� then we adjustpcost up or down accordingly: if
the actual proportion is too low, we decreasepcost, e.g.pcost � ��� ��pcost, and con-
versely, if the proportion is too high, we increase it, e.g.pcost � �� ���pcost���� ��.
This does, of course, introduce several new parameters to the algorithm, which we were
trying to avoid, but we find in practice that the scheme is remarkably robust to them,
in contrast to typical penalty function parameters. This leads to the COMOGA method,
which is outlined below.

The COMOGA Method

1. Calculate constraint violations for all solutions.
2. Pareto rank based on constraint violations (e.g. by counting the number of

members of the population dominated by each solution).
3. Evaluate the cost (fitness) of solutions.
4. Select an (expected) proportionpcost of parents based on cost, and the oth-

ers based on constraint ranking.
5. Apply the genetic move operators (recombination, mutation etc.)
6. Adjustpcost if the proportion of feasible solutions in the population is not

close to the target proportion,� . Loweringpcost favours feasible solutions
and raising it favours lower cost solutions.

The COMOGA scheme has several beneficial features. First, and foremost, it re-
moves the necessity for the many parameters of a penalty function which must be deter-
mined empirically. Secondly, it exploits VEGA’s tendency to favour extreme solutions,
as in this case we are only ultimately interested in solutions which excel at constraint sat-
isfaction (have low constraint rank). Thirdly, the adaptive approach to specifyingpcost
allows the algorithm to find its own trajectory to approach the desired optimal values.

6 Empirical Framework and Results

6.1 Genetic Representation and Operators

The representation used for the pipe sizes in the network is a variable cardinality integer
string. A genome is a sequence ofn integersa�a� 	 	 	 an with ai � f�� �� � � � � Ci � �g,
whereCi is the cardinality (number of alleles) of theith gene andn is the number of
pipes in the network. (The particular problem instance tackled happened to haveCi � �
for each of the 25 pipes but this is not generally the case.) This representation was built as
a generic library for theReproductive Plan Language, RPL2 (Surry & Radcliffe, 1994,
Radcliffe & Surry, 1994).

We used random mutation with rate 0.025 (we allow an allele to be replaced by the
same value), combined with non-cyclic creep mutation (see Davis, 1991) with rate 0.05.
Creep mutation is more appropriate (and effective) in the context of the pipe-sizing prob-
lem since the alleles in this case correspond to an ordered list of pipe sizes, so that con-
secutive integers represent similar pipe sizes.

Initial experiments made use ofN -point crossover, with� � N � �, but this
was found to be less effective than parameterised uniform crossover with suitable bias



(Spears & DeJong, 1991; Syswerda, 1989). We used a bias of 0.6, and a crossover rate
of 1.0. Although uniform crossover is cited as weaker thanN -point crossover in pre-
serving short schemata, this is relevant only if there is greater than average correlation
between adjacent genes in the genome (strong linkage). In the case of the pipe-sizing
problem, it is difficult in general to define an ordering in which this is necessarily the
case, making the uniform crossover operator appropriate for the problem. It is possi-
ble that a labelling derived by minimising the bandwidth of the network’s connectivity
matrix would increase the effectiveness ofN -point crossover for the pipe-sizing prob-
lem, but this has not yet been explored. A further alternative would be to use anN -cut
crossover based on the fixed-topology graph making up the network.

Elitism was used to preserve the best member of the population, and any duplicates
that were created were discarded rather than include multiple copies of them in the pop-
ulation.

All results presented here used an unstructured (“panmictic”) population. Although
some experimentation with various forms of fine-grained and island structures was car-
ried out with the original penalty-function approach, they did not yield significant ben-
efits on this problem.

6.2 Heuristic Approach

The current heuristic technique used by British Gas was applied to the problem, in or-
der to compare its performance to the genetic approach. In fact the network had been
installed using the results obtained from the heuristic.

The heuristic determines a good configuration of pipe sizes by first assuming a con-
stant pressure drop over the whole network and guessing some initial pipe sizes. This al-
ways yields a valid network (i.e. one that satisfies the constraints), but does not normally
produce an optimal configuration. The heuristic proceeds by locally optimising this so-
lution, repeatedly trying to reduce single pipe diameters while maintaining a valid net-
work. Eventually this process terminates when no pipe size can be reduced while main-
taining network validity.

The algorithm takes on the order of ten seconds on a 486 PC (25MHz) to reach its
best configuration for the problem under study. A schematic (which does not represent
differences in pipe lengths and source/demand requirements) of this solution appears in
the left part of figure 4.

6.3 The Genetic Algorithm with a Penalty Function

A wide range of penalty function parameters were tested before arriving at the values
reported in section 5.1. As has been widely reported previously, the quality of the re-
sulting algorithms is highly sensitive to these values, with small changes often resulting
in non-converging runs.

A steady-state update scheme was used, with fitnesses re-calculated once every gen-
eration, since the penalty function is dependent on the current generation number. Bi-
nary tournament selection and replacement with parameter 1.0 were found to be the best
update strategy. It is interesting to note that the algorithm was also quite sensitive to



some of these other parameters, not involved in the penalty function—for instance, a
significant degradation of performance was observed as the binary-tournament parame-
ter was changed. Population sizes from 50 to 500 were tested, with the most efficient be-
ing about 100 individuals. Runs typically involved ten-to-twenty thousand evaluations,
with a stopping condition of five thousand evaluations with no improvement.

The technique (with good parameters) produced consistently good results, although
it did not always converge to the same optimal solution. In most cases it found networks
which were better, often significantly so, than that determined by the heuristic approach.
In almost all cases the algorithm found a valid network by the end of the run (i.e. one in
which the penalty terms were zero). Run times for typical populations of 100 networks
through 100 generations were of the order of several minutes on a Sun SPARC 2 work-
station. The best result was a network which was approximately 4% cheaper than the
heuristic solution. A schematic of this network is shown in figure 4.

Heuristic (Cost 17743.8) Genetic Algorithm (Cost 17075.2)

Source

Demand

Pipe diameter

Fig. 4. The genetic algorithm finds a solution approximately 4% better than that found by the
heuristic technique. The networks are shown only schematically, so that the pipes are actually of
different lengths. The demand and supply requirements are also different at each node. Both net-
works are valid in that they satisfy both the upstream-pipe and minimum pressure constraints. The
genetic algorithm result is typical of a panmictic population of population size 100, running for
100 generations. Run time for the heuristic is a few seconds, as compared to a few minutes for the
genetic algorithm.

6.4 The COMOGA Method

The COMOGA method, outlined in section 5.2 was implemented using the ranking tech-
nique described by Fonseca & Fleming (1993). Each member of the initial population
was assigned a rank according to constraint violation by counting the number of mem-
bers in the population by which it was dominated. Binary tournament selection with
parameter 1.0 was used (with tournaments based on cost value with probabilitypcost,
and otherwise on constraint ranking) to select parents, and the resulting child was re-
inserted using a replace-worst (with worst being with respect to cost with probability



pcost) scheme. The nature of the ranking scheme means it is easy to subtract the effect
of the deleted individual and add the effect of the new individual without re-ranking the
entire population. Tournament replacement was also investigated, but the more aggres-
sive replace-worst strategy proved superior.

As with the penalty function approach, a variety of population sizes, mutation and
crossover rates, and so forth were investigated. Results were best with populations of
about 100 individuals, and with the same stopping conditions, runs lasted for similar
numbers of evaluations, and producedsimilar quality solutions (the same “best” solution
from the penalty-function approach was found consistently). In general, algorithm per-
formance was much less sensitive to the control parameters than were the penalty func-
tion experiments. Most importantly, the COMOGA scheme was not particularly sensi-
tive to the method used for adapting thepcost parameter, nor to the target proportion of
feasible solutions,� .

As noted in the introductory sections, the overall performance of the algorithm em-
ploying COMOGA was very similar to that of the best penalty function approach found,
both in terms of computational effort required and frequency of finding the best solu-
tions. However, significantly less experimentation was required to find values for CO-
MOGA’s parameters that work well than was the case with the penalty function method.

7 Summary

A new approach of general applicability to constrained optimisation—the COMOGA
method—has been introduced. This technique treats each constraint as a separate crite-
rion, then uses a form of pareto ranking to order solutions in terms of their constraint
violation, and finally employs a self-adaptive form of Schaffer’s VEGA scheme, using
cost as one criterion and overall ranked performance against constraints as another.

COMOGA has been successfully used to tackle a real-world,gas-networkpipe-sizing
problem with implicit constraints, and shown to produce solutions of similar quality,
with similar frequency, as a genetic algorithm using a traditional penalty function ap-
proach with a tuned penalty function. Both forms of genetic algorithm were able to re-
duce the cash cost by 4% over the existing heuristic technique used to design the network
previously installed.

The COMOGA method uses the memory implicit in the population to “discover for
itself” the relative worth of different achievable combinations of constraints and objec-
tives. The population thus forms not just a pool of good solutions among which recombi-
nation takes place, but a context in which to determine the fitness of any one member—
the effective weighting of the various constraints is determined by the population, as is
the relative weighting of constraint satisfaction and cost minimisation. This contrasts
with a penalty function approach, where both are determineda priori, and appears to
carry the singificant benefit of reducing the sensitivity of the genetic algorithm to the
values of the free parameters.

While it remains to be seen whether the COMOGA approach will be as successful
for other constrained optimisation problems, the preliminary results are very promising.
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