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Abstract

The conventional understanding of genetic algorithms de-
pends upon analysis by schemata and the notion of intrinsic
parallelism. For this reason, onlyk-ary string representa-
tions have had any formal basis and non-standard represent-
ations and operators have been regarded largely as heurist-
ics, rather than principled algorithms. This paper extends
the analysis to general representations through identifica-
tion of schemata as equivalence classes induced by implicit
equivalence relations over the space of chromosomes.

1 Introduction

Intrinsic parallelism�—the phenomenon whereby eachn-
gene chromosome is an instance of�n schemata—has been
the key theoretical tool for analysing and understanding ge-
netic algorithms. As conventionally understood, it provides
powerful arguments for using binary genes in order to max-
imise the degree of intrinsic parallelism available.

Not all problems, however, find natural expression as
binary—or indeed,k-ary—strings. Examples in this class
include the much-studied Travelling Sales-rep Problem
(TSP) (for example, Goldberg & Lingle [12], Grefenstette
et al [13] and Whitley [23]), neural network shaping and
training (for example, Harp, Samad & Guha [14], Montana
& Davis [16] and Belewet al [3]) and graph optimisation
Norman [17] and Prioret al [18]. Of these, only the TSP
has generated an alternative to standard schema analysis,
in the form of Goldberg’so-schemata [8]. Nevertheless,
non-standard operators have been applied to all of these
problems. Moreover, there has been much controversy
over genetic algorithms using real-valued genes. Goldberg
[11] has proposed his theory of virtual alphabets to explain
the behaviour of these under standard crossover, but a more
general formulation which could take in a broader class of
operators would still be valuable.

This paper extends the notion of intrinsic parallelism (and
the associated “Schema Theorem”) to general non-string
representations through the introduction of arbitrary equi-
valence relations. In doing so it provides a framework
within which arbitrary genetic operators can usefully be

� also known as implicit parallelism

analysed.

The paper begins with a brief but careful review of stand-
ard genetic algorithms, re-formulating slightly, making the
connection between schemata and the equivalence relations
that induce them, and introducing slightly unconventional
notation to facilitate the transition to the more general for-
mulation given later. This more general formulation in-
volves the introduction, in section 3, of general equivalence
relations, and the Schema Theorem is expressed in terms
of these. In section 4, interactions between the conven-
tional k-ary representation and conventional operators are
discussed. Schemata are generalised toformae in section 5,
and “design principles” are suggested for the construction
of useful equivalence relations, chromosomal representa-
tions and crossover operators. In section 6, standard cross-
over operators are analysed in the extended formalism, and
deception is discussed in the context of general represent-
ations in section 7. In section 8 the theory is applied to
the problem of real-valued genes. Results of experiments
suggested by the theory are also given in the section 8.

2 Traditional Schemata

To search a spaceS with a genetic algorithm, the space is
first mapped by a coding function� into a space of chro-
mosomesC which the algorithm actually manipulates:

� � S �� C�

Ideally � should be a bijection. A chromosome��C is
usually taken to be a string ofn genes���� ��� � � � � �n�
drawn from sets of alleles�G��G�� � � � �Gn�, so that the
space of chromosomes is

C
�

�G� � G� � � � � � Gn�

The conventional understanding of the way in which genetic
algorithms search depends upon the implicit introduction
of certain equivalence relations on chromosomes. These
equivalence relations identify chromosomes which share
some genes. The set of all such equivalence relations for a
chromosome withn genes can be represented by

�
�

�f � gn

where is the “don’t care” symbol, which “matches” any
allele, and is used to indicate genes which must match
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for equivalence. Takingn � �, a particular equivalence
relation is then� � � � �, which is conveniently abbre-
viated to . Intuitively, the idea is that two chro-
mosomes are equivalent under this equivalence relation if
they have the same alleles wherever the definition has the

symbol. More carefully, calling each or symbol
in the string describing an equivalence relation acompon-
ent, given any equivalence relation� ��, with components
������ � � � ��n and given chromosomes�� ��C

� � � ��
�
� i�Zn ��i � � � �i � �i

�
�

whereZn � f �� �� � � �� n g. That� satisfies the conditions
of symmetry, reflexivity and transitivity, and is therefore an
equivalence relation, follows immediately from this defin-
ition and the properties of�. These equivalence relations
are in one-to-one correspondence with Walsh partitions, as
described in Goldberg [9].

In practice the equivalence relations are rarely introduced
explicitly, for the analysis depends only upon the equival-
ence classes which they induce. In much the same way
as for the equivalence relations, each equivalence class is
conveniently expressed as aschema, a member of the set

	
�

�G�� � G�� � � � � � G�n�

where G�i
�

�Gi 	 f g�

For example,� � ab � � � is the equivalence class of
all those chromosomes� which have�� � a and�� � b.
Formally,

��� ��
�
�i�Zn ��i 
� � � �i � �i

�
�

Plainly every chromosome is a member (orinstance) of
precisely�n schemata. (This can be seen by noting that re-
placing any subset of a chromosome’s genes bygenerates
a schema which contains that chromosome, and that there
are�n such subsets.)

Let the utility function which the genetic algorithm uses to
guide its search beu. This associates with each chromo-
some a positive, real measure of its performance:

u � C �� R
��

It is useful to construct fromu a measure

� � 	 �� R
��

which gives the utility of a schema as the average utility of
all its members:

����
�

�
�

j�j

X
���

u����

wherej�j is the size of the equivalence class�. Noting that
C � 	� it is then immediately apparent that

���
C

� u�

so that� can be used to yield the utility of either a schema
or a chromosome.

The introductionof a few more pieces of notation allows the
statement of the “Schema Theorem”, also sometimes known
as the “Fundamental Theorem of Genetic Algorithms”. The
defining positions of a schema correspond to thecharac-
ters in the equivalence relation that induces it, so that the
defining positions ofa b c are 1, 3 and 5. Theorder of a
schema,o���, is equal to the number of defining positions
it has, so thato�a b c� � 
, and thedefining length of a
schema,����, is the maximum distance between any pair of
defining positions, so that��a b c� � �� � � �.

A fixed-size populationB�t� of chromosomes is main-
tained at time-stept. Each member ofB�t��� is generated
from one or more of the members ofB�t� by the applica-
tion of the idealised genetic operators, typically crossover
and mutation. A selection algorithmis employed to determ-
ine which chromosomes are to be used as parents. While
many schemes are in use, the traditional approach is to use
fitness-proportionatereproduction. The probabilityof pick-
ing ��B�t� as the principal� parent of any���B�t��� is
then taken to be:

P ��� �
�

jB�t�j

����

��t�
���

where ��t�
�

�
X

��B�t�

�����

Finally, assume that there is a set� of operators and that
	�� is applied with (independent) probabilityp�. Then let
p�� be the probability that a schema� will be disrupted by
the application of this operator. That is, given an operator

	 � C �� C�

p�� is the probability that� does not contain the child whose
parent it does contain:

p��
�

�P �	��� 
� �
�� ����� ���

The Schema Theorem then bounds the expected number
of instancesN��t � �� of each schema� in the population
B�t � �� by�

N��t � ��

�
� N��t�

����t�

��t�

�
��

X
���

p�p
�
�

�
� �
�

where����t� is the sample average for utility of� over all
chromosomes in the populationB�t� which it contains. It
is, in fact, extremely easy both to prove this theorem and to
fill in bounds forp�� for the standard operators. The only
subtlety concerns the treatment of recombination operators
which introduce extra parents.

� The crossover operator takes two parents, and the second is also usually selected
with the probability given.
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Assume initially that the operators are all unary (asexual)
so that every child has precisely one parent. Then the
term outside the brackets follows directly from selection
of the parent on the basis of fitness (equation (1)), and the
bracketed term reduces the bound to take account of the fact
that each operator, when applied, can destroy membership
of the schema. (The second term in the bracket is called the
disruption rate.)

When treating binary (sexual) operatorsp�� must be inter-
preted as the probability that	 destroys membership of a
schema given the probability distribution used to select the
other parent.

For example, using the conventional one-point crossover,
if both parents are selected according to equation (1) then
the probability of disrupting a schema� is bounded above
by the probability that the cross point falls between the
outer-most defining positions. To see this, it is sufficient
to note that picking both parents in this way results in a
doubling of the expected number of offspring from each
schema to�N��t�����t�
��t� and that if the cross point falls
outside the defining region one of the two possible children
is guaranteed to instantiate the given schema. Assuming
that the cross point is chosen uniformly along the length, this
givesp�X � ����
�n � ��, where the subscriptX denotes
crossover.

Similarly, the probability of “losing” at least one defin-
ing position as a result of mutation is bounded above by
pmo���, wherepm is the point mutation rate. Substitution
in equation (2) restores the familiar form of the Fundamental
Theorem:�
N��t � ��

�
� N��t�

����t�

��t�

�
�� pX

����

n� �
� pmo���

	
�

Holland [15], assuming that only one of the parents was
chosen on the basis of fitness, showed a slightly different
result.

3 From Schemata to Equivalence

Schemata, fundamental as they have been to understand-
ing genetic algorithms, are merely a mathematical tool for
analysing and designing their behaviour. The population
of a genetic algorithm consists of individual chromosomes
and it is the utility of these which is actually measured.
Holland observed that each evaluation of a chromosome
can be regarded as a statistical sampling event which yields
information about the sample averages for utility ofeach
of the �n schemata of which it is an instance, the phe-
nomenon referred to as intrinsic parallelism. The signific-
ance, however, of the hat in equation (3), indicating the
observed utility ����t� of a schema, rather than its true fit-
ness�� , cannot be overstated: only provided that there are
correlations between the performance of different members

of the equivalence classes (schemata) can the information
collected in the population accurately guide the further ex-
ploration of the space. This critical point is discussed in
greater detail in Radcliffe [19].

This observation suggests that any representation is useful
only insofar as correlations between different portions of
the search space can be expressed in terms of schemata. Of
course, there is freedom to analyse the algorithm in any way
desired, through the introduction of such equivalence rela-
tions and classes as may be useful, and the objective of this
work is to suggest a framework within which non-standard
equivalence relations and equivalence classes may be ex-
ploited. The careful formulation of the schema theorem in
equation (3) is equally valid if� is interpreted as an arbitrary
subset ofC provided only that the coefficientsp�� are cal-
culated correctly according to equation (2). In particular, it
applies to an arbitrary equivalence class ofany equivalence
relation� on C (or equivalently, given a bijective coding
function, on the real search spaceS) A general method for
bounding these coefficients is now discussed.

A fairly general recombination operatorX has the func-
tional form

X � C � C � AX �� C�

whereAX is a set ofcontrol parameters that determine
which of the typically many possible crosses between two
chromosomes occurs. For example, in the case of one-point
crossover (Holland [15]),AX � Zn��, the set of possible
cross points. Both two-point crossover (De Jong [5]) and
Goldberg’s partially-mapped crossover (PMX [12]) use the
control setAX � Z�n��, the set of all pairs of cross points,
while uniform crossover (for example, Syswerda [22]) has
AX � f �� � gn, the set of alln-bit binary masks. In the
case of a few crossover operators (such as the Grefenstette’s
“Heuristic” Crossover [13]) the control set—if it is mean-
ingful to talk of one at all—depends upon the two chro-
mosomes being crossed, but such operators are beyond the
scope of this paper.

Given this structure, an often useful upper bound on the
coefficientp�� of equation (2), with	 � X, can be calcu-
lated as follows. Let

A�
X

�

�f a�AX

�� ���� ���C � X��� �� a��� g�

the set of parameter settings for which membership of� is
passed to the child from the principal parent (�), regardless
of the partner (�) chosen. Thenp�X can be bounded by

p�X 



�� w� jA

�
X j

jAX j

�
� ���

wherew� is a weight to take account of the possibility that
control parameters fromAX are not all selected with equal
probability. In most cases (including all the crossover op-
erators listed above) the choice is conventionally unbiased
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so thatw� � �. This bound is, in effect, the one used by
Holland to derive the Schema Theorem, and is typically
used in deriving variations for other operators.

A similar approach can be taken for mutation operators.
Conventional point mutation can be viewed as a collection
of n operators

Mi � C � Ai �� C

withAi � Gi, the allele sets. Then

Mi����� � � � �n� a� � ���� � � � �i��a�i�� � � � �n�

The coefficientsp�i are then given by

p
�
i �

�
�� if �i � ,
�jGij � ��
jGij� otherwise.

If each gene is drawn from a set ofk alleles this yields
nX
i��

p
�
i � o���


k � �

k

�
�

4 Representations

There is little theory surrounding good representations for
genetic algorithms. Holland [15] suggested subjecting the
representation itself to adaptation, but the author is aware
of no implementation in which this approach is adop-
ted outside the domain of classifier systems. The Argot
Strategy (Shaefer [20]) does alter the representation during
the course of the search, but not in the manner sugges-
ted by Holland, nor in a way which is amenable to this
analysis. Walsh function analysis is also sometimes used
for post-mortem analysis of why a genetic algorithm fails
(Goldberg, [10]). Goldberg [8], however, suggested the
following two principles for good representations:

The Principle of Meaningful Building Blocks:
The user should select a [representation] so that
short, low-order schemata are relevant to the
underlying problem and relatively unrelated to
schemata over other [defining] positions.
The Principle of Minimal Alphabets:
The user should select the smallest alphabet that
permits a natural expression of the problem.

The analysis presented here focuses on the interaction
between the chromosomal representation,some set of equi-
valence relations� over the chromosomes, and the genetic
operators used. Goldberg’s principles are formulated with
respect to conventional chromosomal representations (n-
tuples of genes drawn from sets of alleles) analysed with
conventional schemata.

His first principle requires three things. First, it emphasizes
the point made in the previous section, that as many equi-
valence classes (schemata) as possible should contain chro-
mosomes which have correlated performance. Secondly,

by seeking to reduce the defining length and order of good
schemata it attempts to minimise the likelihood of disrup-
tion by the genetic operators. Finally, it tries to ensure that
recombination of (instances of) different schemata works
in a useful manner. The second principle attempts to max-
imise the degree of intrinsic parallelism available to the
algorithm by ensuring that each chromosome is an instance
of many schemata.

5 Formae

The above considerations (and others) lead to the follow-
ing proposals for constructing useful equivalence relations,
good representations and suitable sets of operators. These
principles are not all necessary for an effective genetic al-
gorithm, and are certainly not sufficient for it, but might
be expected to characterise good representations. To em-
phasize the link between these equivalence classes and
schemata, the former will be referred to asformae,� and
the number of formae induced by an equivalence relation
will be referred to as theprecision of the relation and the
formae it induces.	 From this pointon,	will be interpreted
as the set of all formae induced by the equivalence relations
in �.

Two formae� and�� will be said to becompatible if it is
possible for a chromosome to be an instance of both� and
��.
 Denoting this by� �� � �, a more careful statement is

� �� �� �� � � �� 
� 
 e �

5.1 Design Principles

1. (Minimal redundancy)The representation should have
minimal redundancy; such redundancy as exists should be
capable of being expressed in terms of the equivalence re-
lations used.
Ideally, each member ofS should be represented by only
one chromosome inC. This is highly desirable in order to
minimise the size of the search space. If redundant solu-
tions are present, but are related by one of the equivalence
relations used, then the genetic algorithm should effectively
be able to “fold out” the redundancy (see principle 4); other-
wise it is doomed to treat redundant solutions as unrelated.

2. (Correlation within formae)Some of the equivalence re-
lations, including some of low precision, must relate chro-
mosomes with correlated performance.

� Although Holland chose the neuter form for the Latin noun schema, there is no
option but to choose the feminine form of its synonym, forma.

� In the case of schemata and genes withk alleles, the precision isk o, whereo is
the order of a schema.

� The term “competitive schemata” has sometimes beenused to describe those which
here would be called incompatible.
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This ensures that useful information can be gathered about
the performance of a forma by sampling its instances. Such
information is used to guide the search. The emphasis is
placed on low-precision formae because these will gen-
erally be less likely to be disrupted by the application of
genetic operators, and are also more likely to be compatible
with one another.

3. (Closure)The intersection of any pair of compatible
formae should itself be a forma.
This ensures that solutions can be specified with different
degrees of accuracy and allows the search gradually to be
refined. Clearly the precision of formae so-constructed will
be at least as high as the that of the higher-precision of the
intersecting formae.

4. (Respect)Crossing two instances of any forma should
produce another instance of that forma.
Formally, it should be the case that

���	 ���� ���� �a�AX � X��� �� a����

whereX is the crossover operator. In this case the cross-
over operator will be said torespect the equivalence rela-
tions (and their formae). This is necessary in order that
the algorithm can converge on good formae, and implies,
for example, thatX��� �� a� � � (assuming that equival-
ence relations of maximum precision specify chromosomes
completely). It also effectively reduces the disruption rate
in the Schema Theorem, though a more accurate value for
p�X than that given in equation (4) is needed in order to see
this. Informally, respect requires that any properties which
parents share, and which are capable of expression in terms
of the formae, be passed on to all their children.

5. (Proper assortment)Given instances of two compatible
formae, it should be possible to cross them to produce a
child which is an instance of both formae.
Formally,

���	 ����	 �� �� ��� ���� ������ � a�AX �

X��� ��� a��� � ��� ���

This relates to Goldberg’s “meaningful building blocks”, of
which he writes ([8], p. 373)

‘Effective processing by genetic algorithms oc-
curs when building blocks—relatively short,
low order schemata with above average fitness
values—combine to form optima or near-optima.’

A crossover operator which obeys equation (5) seems very
much more likely to be able to recombine “buildingblocks”
usefully, and any crossover operator which obeys this prin-
ciple will be saidproperly to assort formae. Informally,

proper assortment requires crossover to be capable of mix-
ing compatible properties from the two parents.

6. (Ergodicity)It should be possible, through a finite se-
quence of applications of the genetic operators, to access
any point in the search space S given any populationB�t�.
This provides theraison d’être for the mutation operator.

6 Crossover and Formae

It is instructive to examine the way standard crossover oper-
ators interact with schemata (the “standard” formae) to see
whether they respect and properly assort them in the sense
of principles 4 and 5. The crossover operators which have
traditionally been used are 1- and 2-point crossover. More
recently, attention has focused on multi-pointcrossover and
the so-called “uniform” crossover operator. Eshelmanet al
[7] have also discussed “shuffle” crossover operators. Re-
call that uniform crossover makes an independent random
choice as to which of the parents the allele at each locus is
drawn from, and shuffle crossover shuffles the (effective)
order of the genes before crossing over, removing “posi-
tional” bias in the sense of Eshelmanet al [7]. All of these
operators respect schemata, for it is plain that under all of
them a child will be an instance of any schema containing
both its parents. Only the uniform and shuffle crossover
operators, however, properly assort schemata.

To see this, consider the chromosomes and schemata
������ � and ����� � �. Plainly the two given
schemata are compatible, with intersection����,but neither
1- nor 2-point crossover can cross them to produce���� in
a single step.� It should be clear that this kind of problem
will arise forn-point crossover with anyfixed n. Both uni-
form and shuffle crossovers, however, can recombine the
two chromosomes as required (albeit with low probability)
and it should be apparent that they always respect schemata.

7 Deception

Deception, like most work on genetic algorithms, has
only hitherto been considered in the context of classical
schemata, and has been rigourously defined by Goldberg
[10]. If, however, more general formae are considered,
then it becomes necessary to consider deception in terms of
the formae under consideration.

� Of course, Holland [15] advocated using inversion with one-point crossover. The
aim of this was to bring co-adapted sets of alleles closer together on the chromo-
some, and in these circumstancesproperassortment is probablynot relevant. Since
inversion is rarely used, however, this case is not considered in detail here. For a
discussions of inversionsee Holland[15], Goldberg[8] andRadcliffe [19].The fact
that uniform crossover is more disruptive to short schemata of a given order than
is one-point crossover becomes a consideration only if the layout of the genes on
the chromosomeis believed to reflect the degree of linkage between the properties
they code accurately.
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Recall that, classically, a function-coding combination is
said to bepartially deceptive if some low-order schemata
lead away from the optimum, and isfully deceptive if all
lower-order schemata lead away from the optimum. This
indicates that defining positions on a schema which are
“wrong” (carry a different allele from the optimal chromo-
some at that locus) lead to higher utilities for the schema.

This definition cannot immediately be carried over to the
case of general formae because it is not meaningful to talk
of ‘genes’, ‘defining positions’ and so forth for an arbitrary
forma. The following definitions, however, seem to capture
the spirit of deception, which in the context of formae will
be termedf -deception. Assume that there is a unique global
optimum represented by���C, i.e.

��� C n f��g � ����  ������

Let the formae induced by any relation��� of precisionk
be����� � ����� � � � � � ��k���� � ���, where������. Then a repres-
entation will be said to bepartially f-deceptive with respect
to� if

���� � max
i

�
�
��i��

�
� �������

In other words, a representation is partiallyf -deceptive
(with respect to the equivalence relations in�) if the global
optimum is not in the equivalence class (forma) of highest
utility for all of the equivalence relations.

In the same spirit, let�� be the set of equivalence relations
of precision lower than the size of the search space (i.e.
those relations which do not induce only singleton formae).
Full f-deception can then be defined as follows:

����� � max
i

�
�
�
�i�
�

�
� �������

This says that for every low-precision equivalence relation
the optimum�� falls outside the equivalence class of top
utility.

8 Real-Valued Problems

Conventional wisdom holds that real-valued problems are
best tackled using binary representations because this al-
lows the maximum level of intrinsic parallelism to be
achieved. (Recall that each chromosome is an instance
of �n schemata, and thatn is maximised for binary genes.)
In practice, however, this intrinsic parallelism can be ex-
ploited only when schemata relate solutions with correlated
performance. To emphasize this critical point, notice that
if the size of the search spaceS is s, there ares� possible
bijective coding functions

� � S �� C�

almost all of which effectively destroy patterns over the
search space. To see this, imagine randomly selecting
a mapping from theses� choices, and notice that this is

exactly equivalent to choosing a (unique) random chro-
mosome fromC to represent each structure inS. Under
these circumstances it should be clear that gathering in-
formation about the performance ofany subset of the chro-
mosomes providesno information about the performance
of the remaining structures—those represented by the un-
tested chromosomes. Nevertheless, the Schema Theorem
(equation (3)) will be obeyed for very one of thes� repres-
entations.

In such circumstances, the search could not be effective
except by chance simply because almost none of schemata
would relate chromosomes with correlated performance.
In other words, schemata are not useful formae in this con-
text. (Holland’s observations ([15], p. 142) about “enriched
schemata” appear initially to refute this claim, but on closer
analysis do not. This is discussed in detail in Radcliffe [19]
(pp.17–18, Compressed Edition).)

In effect the results and arguments presented thus far in
this paper can be seen as a critique of the idea that there is
a single, all-embracing representation and set of operators
which can reasonably be expected to tackle all or most
search problems effectively. The focus here is on finding
sets of formae which characterise the regularities in the
particular problem or class of problems under consideration
and developing operators which manipulate these to good
effect. Thus, for example, rather than seeing a function-
representation pair as deceptive, deception (orf -deception)
is seen as characterising a mis-match between the set of
formae used (together with the operators used to manipulate
them) and the regularities in the space being searched.

To explore these ideas further, the next sections discuss
general binary representations for real-valued problems and
two types of regularities which it might be desirable to
develop formae to characterise. The ideas are made more
concrete by applying them to a familiar set of functions.

8.1 Binary Representations

The great strength of binary representations lies in their
versatility: different schemata relate chromosomes on quite
different bases. Indeed, their robustness is demonstrated
by the wide variety of problems which have been tackled
successfully using binary representations. For example,
consider the natural coding for a real number in the range
��� ��, withN divisions,

��x� �

�
N
x� �� �

� � �

�

where� � �
�N . The schema� � � � then specifies
the upper half-spacex � �� � ��
�, whereas the schema

� � � � specifies alternate strips of width�� across the
space, capturing some possible periodicities.
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The problem lies in the fact that the schemata are far from
uniform over the space. Suppose that� � � and� � ���
with �� divisions. Then���� � ����, ������ � ����,
����� � ���� and������ � ����. It is possible to specify
the interval����� ���� exactly using the low-order schema
� , whereas there is no schema ofany order which
specifies any range which crosses the “Hamming Cliff”
between��� and���. Caruna & Shaffer [4] advocate using
Gray coding to avoid this (and other) problems, but the
interpretation of schemata is then even less obvious, and
serious problems with such schemes have been pointed out
by Goldberg [11]. Nor is locality the only problem: while
some periodicities of powers of two in the discretisation
size are easily characterised using schemata, periodicities
of three, for example, are incapable of being so represented.
The problem seems to lie in the fact that relatively few of
the schemata seem to be induced by equivalence relations
which group together “useful” sets of points.

Whether more useful equivalence relations can be de-
veloped depends very much on how much insight can be
gained into likely kinds of structure in the problem. For
function optimisation over intervals inRn, locality and peri-
odicity seem like obvious—though not universal—starting
points.

8.2 Locality

Simplifying to functions of one real variable (S � R),
suitable equivalence relations for capturing locality are in-
tervals specified by a position and a radius. LetB�c� r� be
the half-open intervalc � r  x  c � r, r�R�, and let
B�c� �� � fcg. Then the equivalence relation specified by
positionp and radiusr is

� � � ��
�
� k�Z � �� ��B�p� �kr� r�

�
with formae

fB�p� �kr� r�
�� k�Z g�

Thus any interval���� ��� is an equivalence class under
some equivalence relation.

Moving back to the more general problem of searching a
spaceS which hasn real-valued parameters,

S �
nY
i��

Ii�

where Ii � ��i� �i� � R�

a suitable set of “locality” equivalence relations�L can be
defined as

�L �
nY
i��

I�i �

where I�i � I�i 	 f g�

(The “don’t care” character is strictly redundant, but is left
in for notational convenience.) This induces formae which
can be described using exactly the same set as for�L,
namely

	L �
nY
i��

I�i �

Thus a typical forma� with n � 
 can be written as
hB����� ����� � B����� ���� i� with the interpretation that
a chromosome� is an instance of� if ���  ��  ��
 and
��
  ��  ���. Formally,

��� �� ��i�Zn ��i 
� � � �i��i��

If these equivalence relations are to be used, then a cross-
over operator should be constructed which both respects and
properly assorts the formae they induce. Standard cross-
over with real genes would respect them, but would fail
properly to assort them. An example should make this
clear. The sub-formae� B����� ���� and B����� ���� are
compatible with intersectionB����� ����, but given genes
��
�B����� ���� and ����B����� ���� it is impossible for
standard crossover to generate any value inB����� ����
since the result of such a cross will always either be��

or ���. The presence of Hamming cliffs also makes it im-
mediately clear that standard crossover with binary genes
will not respect these formae.

A more suitable crossover operator is:

XF � C � C � ��� ��n �� C

with XF
i ��� �� r� � rij� � �j�minf �� � g�

which will be calledflat crossover (see figure 1). Given
a pair of real-valued genes, this operator returns a random
value within the interval between them. The choice is
uniform provided that eachri is chosen uniformly. (The
control set here isAF � ��� ��n.) Plainly this operator
respects formae from	L, for if the two genes have the
same value then the interval they define has zero width.
Moreover, compatible formae� and �� have overlapping
intervals at each locus. Given��� and�����, it is clearly
possible to choose a set ofri such that each gene of the
child sits within the intersection� � � �.

ThusXF respects and properly assorts formae from	L,
composed of intervals of arbitrary widths in the search space
S. A genetic algorithm using this might be expected to
perform well on a real-valued problem for which localityis
the appropriate kind of equivalence to impose on solutions,
utilising the intrinsic parallelism which derives from each
chromosome’s being an instance of many locality formae.

Two related problems, however, remain. The first is the
question of a suitable mutation operator. The second prob-

� defined on a single gene
� affectionately known as “top hat”
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Figure 1: The graph on the left shows the probability dis-
tribution function for the one-dimensional flat crossover
operator “top-hat” when crossing� and�. The graph on
the right shows the corresponding distribution function for
traditional crossover with real genes and uniform crossover
with real genes. The distribution function for traditional
crossover with binary genes looks very different according
to the chromosomes being crossed. For example, using
4-bit binary coding on the range [0,15], 7 (=0111B) and
8 (=1000B) can cross to produceany child under uniform
crossover, whereas 0 (=0000B) and 8 (=1000B) can only
produce copies of themselves.

lem concerns a bias in the operator, namely that it systemat-
ically biases the search away from the ends of the intervals,
violating ergodicity in the sense of principle 6.

Recall that the r̂ole of mutation fork-ary string represent-
ations is usually understood to be that of keeping the gene
pool well-stocked, the fear being that if an allele for some
gene is not present in any member of the population, cross-
over will never be able to generate it and will thus not have
access to the entire search space. This observation, which
motivated the principle of ergodicity, suggests that the two
problems mentioned can be tackled together by defining a
mutation operator which only inserts extremal values into
the gene pool, thus countering the bias ofXF . As before,
givenn genes per chromosome (now real-valued), a set of
n point mutation operators are defined according to

MR
i � C � f�i� �i g �� C�

with MR
i ����� � � � �n� a� � ���� � � � �i��a�i�� � � � �n�

The difference between this and standard mutation is that
instead of using the interval��i� �i� as the control setAi,
only the end-points�i and�i are now used. If both parents
are selected according to fitness, such mutations should be
appliedbefore crossing over, in order to reduce the prob-
ability of generating a child of very low fitness which then
fails to reproduce.

As an illustration of these ideas, De Jong’s standard test
suite of functions ([6]) were examined using both a standard
binary representation with uniform crossover, and a real-
valued representation using flat crossover as defined above.
Following Eshelmanet al [7] the functions are described
here only summarily in table 1.

Of the five functions, good performance might reason-

function value

Evaluations

0 500 1000 1500 2000 2500 3000 3500 4000
0.0

0.5

1.0

1.5

2.0

binary, best

binary, offline

real, best

real, offline

Figure 2: De Jong’sf�. The “real” traces use the “flat”
crossover operator, which chooses a random value in the
range bounded by the parents’ genes. The binary trace is
the same algorithm using binary uniform crossover.

fn. dim space size description

f� 3 ���� ��� parabola
f� 2 ���� ��� Rosenbrock’s Saddle
f� 5 ���� ���
 step function
f	 30 ���� ���� noisy quadratic
f
 2 ���� ���� Shekels foxholes
f� 2 ���� ���� Random foxholes

Table 1: De Jong’s test suite of functionsf�–f
, augmented
by random foxholes.

ably be expected onf�, f� andf	, which are (essentially)
smooth, whereas very poor performance would be expec-
ted onf
. Reasonable performance might also be anticip-
ated onf�, which while not smooth, is reasonably local in
nature. The results for off-line and best-seen performance
are shown in figures 2–7. An extra function,f� is also in-
cluded, which is a variation on Shekel’s foxholes in which
the positions of the foxholes are random, rather than in a
regular grid.

A comparison is shown between the same genetic algorithm
using both binary and real representations, with parameters
selected to give good performance with binary represent-
ations. Following Shafferet al [21], the point mutation
rate was made inversely proportional to the chromosome
length, and was thus higher when using real representa-
tions (with fewer genes) than for their binary counterparts.
Baker’s Stochastic Universal Sampling procedure [2] and
rank-based selection, broadlyà la Baker [1] were used.
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Figure 3: De Jong’sf�

function value

Evaluations

-30

-27

-24

-21

-18

-15

binary, best

binary, offline

real, best

real, offline

Figure 4: De Jong’sf�
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Figure 5: De Jong’sf	
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Figure 6: Results for De Jong’sf
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Figure 7: Results forf�: randomly-placed foxholes

Flat cross-over and extremal mutations, as described above,
were used for the real-valued case, and uniform crossover
was used for the binary trials. The results are all averages
over 100 runs.

As predicted, flat-crossover with real genes performs ex-
tremely well on the smoothf�, f� andf	, out-performing
binary representations. Onf�, although less effective than
the binary case, the global optimum is still consistently
found in reasonable time.

The results for Shekel’s foxholes are rather more surprising.
With the standard foxhole configuration, (a five-by-five grid
with spacing 16) the binary representation appears super-
ior, though the real representation performs amazingly well
considering that the crossover operator it uses was only de-
signed to respectlocality formae, which have no obvious
relevance to this problem. Notice, however, that points
differing by 16.384 are very close in Hamming Distance
under the binary representation, making it easy to hop from
one foxhole to another. For this reason, a second set of tri-
als was performed using fox-hole coordinates each chosen
at random. In this case, the real representation using flat
crossover gives slightly superior performance to the binary
representation.

8.3 Periodicity

Dealing with general periodicities,unsurprisingly, is harder.
Constructing equivalence relations�P capable of capturing

�� 0 5 10 15 20
�� 0 4 8 12 16 20
�� 0 20
�	 4 10 16

Figure 8: Four “locality” formae. Each number is the centre
of a half-open interval of width half.�� � �� � �� and�	 is
compatible with both�� and��.

general periodicities is not difficult: suitable relations are
specified by a positionp, a radiusr (to allow for fuzziness)
and a periodT which is an integral multiple ofr. Given
these, and again simplifying to functions of one real vari-
able, two chromosomes are equivalent if they lie in intervals
of radiusr centred about points separated by a multiple of
the periodT . Formally,

� � �
� ��


� k� k��Z � ��B�p� kT� r�

and���B�p� k�T� r�

�
�

These equivalence relationsare extremely flexible, subsum-
ing the previous “locality” relations immediately by setting
T to zero. If a crossover operator could be constructed
which both respected and properly assorted these relations
it might be expected that an extremely powerful algorithm
for real-valued problems would result.

Sadly, no such operator exists. To see this, consider the
formae�� to �	 in figure 8, each with radiusr � ���:

The numbers above indicate the centres of the intervals
which the formae comprise, so that�� consists ofB��� ����
andB���� ����. Notice that�� � �� � �� 
� 
 e so that
�� �� ��. Consider chromosomes�������	 and������	.
If a crossover operatorXP is to respect�	 then it must be
the case that for alla�AP : XP ��� ��� a���	; that is, all
possible children of� and�� must be members of�	. If
it is to assort�� and�� properly then there must be some
a��AP for whichX��� ��� a����� � ��, that is, it must be
possible to cross� and�� to produce a chromosome which
is an instance of both�� and ��. These conditions are
incompatible, however, because�	 � �� � �� � 
 e.

It should be emphasized that this is not a failure of the forma
analysis, which has simply revealed that general periodicit-
ies are extremely hard for a genetic algorithm to be sensit-
ive to. It has been demonstrated that no crossover operator
can both fully respect and properly assort the formae	P

induced by�P , but it is quite possible for an operator par-
tially to respect and assort them. Indeed, uniform crossover
does this. Whether an operator can be constructed which
better respects and/or assorts	P remains an open question.
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9 Conclusion

Intrinsic parallelism, the key concept under-pinninggenetic
search, has been shown not to be restricted tok-ary string
representations. Given a suitable set of equivalence re-
lations and a crossover operator which both respects and
properly assorts its equivalence classes (formae) without
excessive disruption, any genetic algorithm will exhibit
intrinsic parallelism. These ideas have been applied to
standard crossover operators to provide another insight into
the sometimes-claimed superiority of the uniform cross-
over operator over traditional 1- and 2-point crossover, and
to apply genetic algorithms more effectively to some real-
valued problems. They could equally well be applied to
other problems for whichk-ary string representations and
schemata are not obviously appropriate. Such areas include
neural networks, the TSP and graph optimisation.
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